{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Lab 5 - Non-parametric distributions and bootstrap\n", "\n", "Last lab we looked at parametric distributions like the normal distribution and exponential distribution. Parametric distributions can be described by a (mathematical) function and their exact shape is determined by parameters (mean and standard deviation for the normal distribution; the rate $\\lambda$ for the exponential distribution).\n", "\n", "Today we will look at *non-parametric distributions* which either cannot be described by a mathematical function or the exact mathematical function is unknown.\n", "\n", "We will start with the restaurant inspection data from Assignment 1." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "\n", "%matplotlib inline\n", "\n", "# show all columns\n", "pd.set_option('display.max_columns', None)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Create a dataframe with the restaurant inspection data, remembering to make the type of the inspection date column datetime." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "df = pd.read_csv(\"DOHMH_New_York_City_Restaurant_Inspection_Results.csv\")" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
CAMISDBABOROBUILDINGSTREETZIPCODEPHONECUISINE DESCRIPTIONINSPECTION DATEACTIONVIOLATION CODEVIOLATION DESCRIPTIONCRITICAL FLAGSCOREGRADEGRADE DATERECORD DATEINSPECTION TYPELatitudeLongitudeCommunity BoardCouncil DistrictCensus TractBINBBLNTA
050074557FISH VILLAGEQueens2007127TH ST11356.06468307299Chinese01/02/2019Violations were cited in the following area(s).08CPesticide use not in accordance with label or ...N22.0NaNNaN08/30/2019Cycle Inspection / Initial Inspection40.781449-73.841413407.019.091900.04099328.04.041720e+09QN23
150086382IL POSTOBrooklyn7409AVENUE U11234.07182414317Italian01/02/2019Violations were cited in the following area(s).08AFacility not vermin proof. Harborage or condit...N29.0NaNNaN08/30/2019Pre-permit (Operational) / Initial Inspection40.621321-73.905154318.046.069602.03237484.03.084150e+09BK45
241258823LITTLE CAESARSBronx1888WESTCHESTER AVENUE10472.03476571722Pizza01/02/2019Violations were cited in the following area(s).10FNon-food contact surface improperly constructe...N4.0A01/02/201908/30/2019Cycle Inspection / Re-inspection40.832928-73.861964209.018.07200.0NaN2.000000e+00BX55
350002053THE LOCALQueens13-0244TH AVENUE11101.03477385251American01/02/2019Violations were cited in the following area(s).06DFood contact surface not properly washed, rins...Y7.0A01/02/201908/30/2019Cycle Inspection / Initial Inspection40.749644-73.947487402.026.01900.04005221.04.004460e+09QN31
450055374FLORA BARManhattan945MADISON AVE10021.06317038780American01/02/2019Violations were cited in the following area(s).04NFilth flies or food/refuse/sewage-associated (...Y11.0A01/02/201908/30/2019Cycle Inspection / Re-inspection40.773450-73.964199108.04.013000.01041666.01.013890e+09MN40
\n", "
" ], "text/plain": [ " CAMIS DBA BORO BUILDING STREET ZIPCODE \\\n", "0 50074557 FISH VILLAGE Queens 2007 127TH ST 11356.0 \n", "1 50086382 IL POSTO Brooklyn 7409 AVENUE U 11234.0 \n", "2 41258823 LITTLE CAESARS Bronx 1888 WESTCHESTER AVENUE 10472.0 \n", "3 50002053 THE LOCAL Queens 13-02 44TH AVENUE 11101.0 \n", "4 50055374 FLORA BAR Manhattan 945 MADISON AVE 10021.0 \n", "\n", " PHONE CUISINE DESCRIPTION INSPECTION DATE \\\n", "0 6468307299 Chinese 01/02/2019 \n", "1 7182414317 Italian 01/02/2019 \n", "2 3476571722 Pizza 01/02/2019 \n", "3 3477385251 American 01/02/2019 \n", "4 6317038780 American 01/02/2019 \n", "\n", " ACTION VIOLATION CODE \\\n", "0 Violations were cited in the following area(s). 08C \n", "1 Violations were cited in the following area(s). 08A \n", "2 Violations were cited in the following area(s). 10F \n", "3 Violations were cited in the following area(s). 06D \n", "4 Violations were cited in the following area(s). 04N \n", "\n", " VIOLATION DESCRIPTION CRITICAL FLAG SCORE \\\n", "0 Pesticide use not in accordance with label or ... N 22.0 \n", "1 Facility not vermin proof. Harborage or condit... N 29.0 \n", "2 Non-food contact surface improperly constructe... N 4.0 \n", "3 Food contact surface not properly washed, rins... Y 7.0 \n", "4 Filth flies or food/refuse/sewage-associated (... Y 11.0 \n", "\n", " GRADE GRADE DATE RECORD DATE \\\n", "0 NaN NaN 08/30/2019 \n", "1 NaN NaN 08/30/2019 \n", "2 A 01/02/2019 08/30/2019 \n", "3 A 01/02/2019 08/30/2019 \n", "4 A 01/02/2019 08/30/2019 \n", "\n", " INSPECTION TYPE Latitude Longitude \\\n", "0 Cycle Inspection / Initial Inspection 40.781449 -73.841413 \n", "1 Pre-permit (Operational) / Initial Inspection 40.621321 -73.905154 \n", "2 Cycle Inspection / Re-inspection 40.832928 -73.861964 \n", "3 Cycle Inspection / Initial Inspection 40.749644 -73.947487 \n", "4 Cycle Inspection / Re-inspection 40.773450 -73.964199 \n", "\n", " Community Board Council District Census Tract BIN BBL \\\n", "0 407.0 19.0 91900.0 4099328.0 4.041720e+09 \n", "1 318.0 46.0 69602.0 3237484.0 3.084150e+09 \n", "2 209.0 18.0 7200.0 NaN 2.000000e+00 \n", "3 402.0 26.0 1900.0 4005221.0 4.004460e+09 \n", "4 108.0 4.0 13000.0 1041666.0 1.013890e+09 \n", "\n", " NTA \n", "0 QN23 \n", "1 BK45 \n", "2 BX55 \n", "3 QN31 \n", "4 MN40 " ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "df[\"INSPECTION DATE\"] = pd.to_datetime(df[\"INSPECTION DATE\"])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Question 3 of Assignment 1 asked if the mean inspection score in January was different from the mean inspection score in July. We are going to look at this question in more detail.\n", "\n", "First let's create a dataframe with only the January inspections." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "jan_filter = df[\"INSPECTION DATE\"].dt.month == 1\n", "df_jan = df[jan_filter]" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
CAMISDBABOROBUILDINGSTREETZIPCODEPHONECUISINE DESCRIPTIONINSPECTION DATEACTIONVIOLATION CODEVIOLATION DESCRIPTIONCRITICAL FLAGSCOREGRADEGRADE DATERECORD DATEINSPECTION TYPELatitudeLongitudeCommunity BoardCouncil DistrictCensus TractBINBBLNTA
050074557FISH VILLAGEQueens2007127TH ST11356.06468307299Chinese2019-01-02Violations were cited in the following area(s).08CPesticide use not in accordance with label or ...N22.0NaNNaN08/30/2019Cycle Inspection / Initial Inspection40.781449-73.841413407.019.091900.04099328.04.041720e+09QN23
150086382IL POSTOBrooklyn7409AVENUE U11234.07182414317Italian2019-01-02Violations were cited in the following area(s).08AFacility not vermin proof. Harborage or condit...N29.0NaNNaN08/30/2019Pre-permit (Operational) / Initial Inspection40.621321-73.905154318.046.069602.03237484.03.084150e+09BK45
241258823LITTLE CAESARSBronx1888WESTCHESTER AVENUE10472.03476571722Pizza2019-01-02Violations were cited in the following area(s).10FNon-food contact surface improperly constructe...N4.0A01/02/201908/30/2019Cycle Inspection / Re-inspection40.832928-73.861964209.018.07200.0NaN2.000000e+00BX55
350002053THE LOCALQueens13-0244TH AVENUE11101.03477385251American2019-01-02Violations were cited in the following area(s).06DFood contact surface not properly washed, rins...Y7.0A01/02/201908/30/2019Cycle Inspection / Initial Inspection40.749644-73.947487402.026.01900.04005221.04.004460e+09QN31
450055374FLORA BARManhattan945MADISON AVE10021.06317038780American2019-01-02Violations were cited in the following area(s).04NFilth flies or food/refuse/sewage-associated (...Y11.0A01/02/201908/30/2019Cycle Inspection / Re-inspection40.773450-73.964199108.04.013000.01041666.01.013890e+09MN40
550071225F & M 99 CENTS PIZZAManhattan153AVENUE C10009.03479166922Pizza2019-01-02Violations were cited in the following area(s).10FNon-food contact surface improperly constructe...N3.0A01/02/201908/30/2019Cycle Inspection / Re-inspection40.725580-73.977765103.02.02800.01004775.01.003920e+09MN28
650085847MEMORIES OF SHANGHAIQueens6860AUSTIN ST11375.07188802938Chinese/Cuban2019-01-02Violations were cited in the following area(s).04LEvidence of mice or live mice present in facil...Y12.0A01/02/201908/30/2019Pre-permit (Operational) / Initial Inspection40.722218-73.850433406.029.071100.04077447.04.032340e+09QN17
741195691F & J PINE RESTAURANTBronx1913BRONXDALE AVENUE10462.07187925956Italian2019-01-02Violations were cited in the following area(s).04HRaw, cooked or prepared food is adulterated, c...Y20.0B01/02/201908/30/2019Cycle Inspection / Re-inspection40.848944-73.862061211.013.024600.02048074.02.042630e+09BX49
850033574CHEZ ALAIN RESTAURAUNTManhattan20467TH AVE10027.02126787820African2019-01-02Violations were cited in the following area(s).02BHot food item not held at or above 140º F.Y23.0B01/02/201908/30/2019Cycle Inspection / Re-inspection40.807227-73.949609110.09.022200.01058564.01.019280e+09MN11
941024941LUCIANO'SBrooklyn15METROTECH CENTER11201.07188556668American2019-01-02Violations were cited in the following area(s).06ESanitized equipment or utensil, including in-u...Y10.0A01/02/201908/30/2019Cycle Inspection / Initial Inspection40.693700-73.984786302.033.01500.03348771.03.020470e+09BK38
1041258550SUBWAYQueens5122NORTHERN BOULEVARD11377.07187793534Sandwiches2019-01-02Violations were cited in the following area(s).06FWiping cloths soiled or not stored in sanitizi...Y12.0A01/02/201908/30/2019Cycle Inspection / Initial Inspection40.753155-73.908138402.026.025500.04027255.04.011920e+09QN63
1141551369CHA PA'S VIETNAMESE EATERYManhattan314WEST 52 STREET10019.02129569300Vietnamese/Cambodian/Malaysia2019-01-02Violations were cited in the following area(s).06DFood contact surface not properly washed, rins...Y17.0B01/02/201908/30/2019Cycle Inspection / Re-inspection40.763788-73.985809104.03.013300.01075655.01.010420e+09MN15
1250085424TAAM TOV RESTAURANTManhattan41W 47TH ST10036.02127688001Jewish/Kosher2019-01-02Establishment Closed by DOHMH. Violations wer...05DHand washing facility not provided in or near ...Y40.0NaNNaN08/30/2019Pre-permit (Operational) / Re-inspection40.757252-73.979967105.04.09600.01034476.01.012630e+09MN17
1341352974SAKURA 6 JAPANESE CUISINEBrooklyn837MANHATTAN AVENUE11222.07183497888Japanese2019-01-02Establishment Closed by DOHMH. Violations wer...06CFood not protected from potential source of co...Y72.0NaNNaN08/30/2019Cycle Inspection / Initial Inspection40.728710-73.953612301.033.056100.03065102.03.025730e+09BK76
1450082392ATOMIC WINGSQueens15923HILLSIDE AVE11432.07184806642Chicken2019-01-02Violations were cited in the following area(s).08CPesticide use not in accordance with label or ...N2.0NaNNaN08/30/2019Pre-permit (Operational) / Compliance Inspection40.707798-73.802505408.024.044602.04209065.04.097690e+09QN61
1550046198BUTTERCUP BAKE SHOPManhattan167MADISON AVE10016.08442253369Bakery2019-01-02Violations were cited in the following area(s).10BPlumbing not properly installed or maintained;...N12.0A01/02/201908/30/2019Cycle Inspection / Initial Inspection40.746992-73.983503105.02.07400.01080790.01.008620e+09MN17
1650046108BAGELS CONVENIENCE STOREBrooklyn4113AVENUE U11234.07186922929Sandwiches/Salads/Mixed Buffet2019-01-02Violations were cited in the following area(s).04NFilth flies or food/refuse/sewage-associated (...Y41.0NaNNaN08/30/2019Cycle Inspection / Initial Inspection40.608936-73.923911318.046.066200.03241899.03.085410e+09BK45
1741195691F & J PINE RESTAURANTBronx1913BRONXDALE AVENUE10462.07187925956Italian2019-01-02Violations were cited in the following area(s).08AFacility not vermin proof. Harborage or condit...N20.0B01/02/201908/30/2019Cycle Inspection / Re-inspection40.848944-73.862061211.013.024600.02048074.02.042630e+09BX49
1850058627GLATT CONEY KOSHER CHINESE RESTAURANTBrooklyn1558CONEY ISLAND AVE11230.07186767781Jewish/Kosher2019-01-02Violations were cited in the following area(s).08AFacility not vermin proof. Harborage or condit...N21.0NaNNaN08/30/2019Cycle Inspection / Initial Inspection40.619372-73.964163312.044.045400.03171991.03.065460e+09BK46
1941618394CREATEQueens360330 AVENUE11103.07182040333American2019-01-02Violations were cited in the following area(s).04HRaw, cooked or prepared food is adulterated, c...Y15.0NaNNaN08/30/2019Cycle Inspection / Initial Inspection40.764958-73.917252401.022.06502.04009272.04.006300e+09QN70
2050060531FIELDS GOOD CHICKENManhattan304PARK AVE S10010.02125649805Chicken2019-01-02Violations were cited in the following area(s).04NFilth flies or food/refuse/sewage-associated (...Y40.0NaNNaN08/30/2019Cycle Inspection / Initial Inspection40.739999-73.986507105.02.05600.01016287.01.008510e+09MN13
2150038775AVANT GARDENManhattan130E 7TH ST10009.02127772017Vegetarian2019-01-02Violations were cited in the following area(s).06CFood not protected from potential source of co...Y48.0NaNNaN08/30/2019Cycle Inspection / Initial Inspection40.726179-73.983869103.02.03200.01005791.01.004340e+09MN22
2250056913SHORTY'SManhattan5769TH AVE10036.02129673055American2019-01-02Violations were cited in the following area(s).08AFacility not vermin proof. Harborage or condit...N11.0A01/02/201908/30/2019Cycle Inspection / Re-inspection40.758247-73.992748104.03.011500.01024934.01.010320e+09MN15
2340364920RIZZO'S FINE PIZZAQueens3013STEINWAY STREET11103.07187219862Pizza2019-01-02Violations were cited in the following area(s).04AFood Protection Certificate not held by superv...Y26.0NaNNaN08/30/2019Cycle Inspection / Initial Inspection40.763275-73.915478401.022.014900.04011252.04.006800e+09QN70
2450012623SLICK WILLIEBrooklyn179MESEROLE AVE11222.07183890090American2019-01-02Violations were cited in the following area(s).10FNon-food contact surface improperly constructe...N21.0B01/02/201908/30/2019Cycle Inspection / Re-inspection40.728255-73.949203301.033.057300.03065435.03.026010e+09BK76
2541471993NEW MEI MEI CHINESE RESTAURANTBrooklyn3566NOSTRAND AVENUE11229.07187431054Chinese2019-01-02Violations were cited in the following area(s).02BHot food item not held at or above 140º F.Y11.0A01/02/201908/30/2019Cycle Inspection / Initial Inspection40.597078-73.941255315.048.059402.03201579.03.073860e+09BK17
2640364920RIZZO'S FINE PIZZAQueens3013STEINWAY STREET11103.07187219862Pizza2019-01-02Violations were cited in the following area(s).10FNon-food contact surface improperly constructe...N26.0NaNNaN08/30/2019Cycle Inspection / Initial Inspection40.763275-73.915478401.022.014900.04011252.04.006800e+09QN70
2750038775AVANT GARDENManhattan130E 7TH ST10009.02127772017Vegetarian2019-01-02Violations were cited in the following area(s).02HFood not cooled by an approved method whereby ...Y48.0NaNNaN08/30/2019Cycle Inspection / Initial Inspection40.726179-73.983869103.02.03200.01005791.01.004340e+09MN22
2850038775AVANT GARDENManhattan130E 7TH ST10009.02127772017Vegetarian2019-01-02Violations were cited in the following area(s).04CFood worker does not use proper utensil to eli...Y48.0NaNNaN08/30/2019Cycle Inspection / Initial Inspection40.726179-73.983869103.02.03200.01005791.01.004340e+09MN22
2941667296ABRACADABRA BROOKLYNBrooklyn347BEDFORD AVENUE11211.03478449157American2019-01-02Establishment Closed by DOHMH. Violations wer...08AFacility not vermin proof. Harborage or condit...N41.0NaNNaN08/30/2019Cycle Inspection / Initial Inspection40.712049-73.962832301.034.055100.03342036.03.024310e+09BK73
.................................................................................
1143350047769LITTLE CAESAR'SManhattan377W 125TH ST10027.05162423711Pizza2019-01-31Violations were cited in the following area(s).10AToilet facility not maintained and provided wi...N5.0A01/31/201908/30/2019Cycle Inspection / Initial Inspection40.811085-73.953334109.09.020901.01059320.01.019520e+09MN09
1143450087534COMFORT INN & SUITESQueens6030MAURICE AVE11378.07184575555American2019-01-31Violations were cited in the following area(s).20D“Choking first aid” poster not posted. “Alcoho...NNaNNaNNaN08/30/2019Administrative Miscellaneous / Initial Inspection40.729144-73.905007405.030.051500.04054291.04.023650e+09QN30
1143550045571WING YUM LIN'S RESTAURANTQueens11021JAMAICA AVE11418.07188059868Chinese2019-01-31Violations were cited in the following area(s).08AFacility not vermin proof. Harborage or condit...N21.0NaNNaN08/30/2019Cycle Inspection / Initial Inspection40.696512-73.837693409.032.012800.04192620.04.092240e+09QN54
1143650045571WING YUM LIN'S RESTAURANTQueens11021JAMAICA AVE11418.07188059868Chinese2019-01-31Violations were cited in the following area(s).09BThawing procedures improper.N21.0NaNNaN08/30/2019Cycle Inspection / Initial Inspection40.696512-73.837693409.032.012800.04192620.04.092240e+09QN54
1143740998581TRUMP CAFE & GRILLManhattan7255 AVENUE10022.02127157290American2019-01-31Violations were cited in the following area(s).10FNon-food contact surface improperly constructe...N7.0A01/31/201908/30/2019Cycle Inspection / Initial Inspection40.762501-73.974287105.04.011202.01035794.01.012928e+09MN17
1143850060606LAS CATRINASQueens3202BROADWAY11106.09177450969Mexican2019-01-31Violations were cited in the following area(s).06APersonal cleanliness inadequate. Outer garment...Y15.0NaNNaN08/30/2019Cycle Inspection / Initial Inspection40.761524-73.924461401.022.05900.04008327.04.006120e+09QN70
1143950049820LOS NISPEROS PERUVIAN RESTAURANTBronx500E 149TH ST10455.07182923377Peruvian2019-01-31Violations were cited in the following area(s).10BPlumbing not properly installed or maintained;...N47.0NaNNaN08/30/2019Cycle Inspection / Initial Inspection40.814823-73.914657201.08.04300.02098210.02.022750e+09BX39
1144050063064YAAR INDIAN RESTAURANTQueens225531ST ST11105.07187210205Indian2019-01-31Violations were cited in the following area(s).06CFood not protected from potential source of co...Y16.0NaNNaN08/30/2019Cycle Inspection / Initial Inspection40.774981-73.912076401.022.011500.04017050.04.008330e+09QN72
1144141299744PSARIQueens321036 AVENUE11106.07187866015Greek2019-01-31Violations were cited in the following area(s).06CFood not protected from potential source of co...Y18.0NaNNaN08/30/2019Cycle Inspection / Initial Inspection40.756114-73.928781401.026.05500.04007949.04.006010e+09QN68
1144250002396ISLAND CZ CAFEBrooklyn743FRANKLIN AVE11238.07185766700Caribbean2019-01-31Violations were cited in the following area(s).08AFacility not vermin proof. Harborage or condit...N12.0A01/31/201908/30/2019Cycle Inspection / Re-inspection40.673417-73.956963308.035.021900.03031390.03.012380e+09BK61
1144350086570FOOD STREET RESTAURANTQueens21545JAMAICA AVE11428.07184137002Indian2019-01-31Violations were cited in the following area(s).10BPlumbing not properly installed or maintained;...N11.0A01/31/201908/30/2019Pre-permit (Operational) / Re-inspection40.717381-73.739534413.023.056600.04226330.04.106080e+09QN34
1144450040897TOUS LES JOURSManhattan7DIVISION ST10002.02129666777Bakery2019-01-31Violations were cited in the following area(s).08AFacility not vermin proof. Harborage or condit...N12.0A01/31/201908/30/2019Cycle Inspection / Re-inspection40.714067-73.997075103.01.0800.01003526.01.002810e+09MN27
1144550081834BAYA BARStaten Island3830RICHMOND AVE10312.07182336301Juice, Smoothies, Fruit Salads2019-01-31Violations were cited in the following area(s).06DFood contact surface not properly washed, rins...Y5.0NaNNaN08/30/2019Pre-permit (Operational) / Compliance Inspection40.544787-74.165546503.051.017011.05073924.05.055910e+09SI01
1144650063064YAAR INDIAN RESTAURANTQueens225531ST ST11105.07187210205Indian2019-01-31Violations were cited in the following area(s).04NFilth flies or food/refuse/sewage-associated (...Y16.0NaNNaN08/30/2019Cycle Inspection / Initial Inspection40.774981-73.912076401.022.011500.04017050.04.008330e+09QN72
1144741639167GOLDEN KRUST CARIBBEAN BAKERY & GRILLBrooklyn1655PITKIN AVENUE11212.07183427576Caribbean2019-01-31Violations were cited in the following area(s).10FNon-food contact surface improperly constructe...N9.0A01/31/201908/30/2019Cycle Inspection / Initial Inspection40.669472-73.912162316.041.092400.03080746.03.034980e+09BK81
1144841480048CENTURY SUPER BUFFETQueens2201218HILLSIDE AVENUENaN7184682100Chinese2019-01-31Establishment Closed by DOHMH. Violations wer...09CFood contact surface not properly maintained.N90.0NaNNaN08/30/2019Cycle Inspection / Initial Inspection0.0000000.000000NaNNaNNaNNaN4.000000e+00NaN
1144950015134SAPIENZAQueens16424CROSSBAY BLVD11414.07183234011Delicatessen2019-01-31Violations were cited in the following area(s).18GManufacture of frozen dessert not authorized o...NNaNNaNNaN08/30/2019Administrative Miscellaneous / Initial Inspection40.650263-73.837679410.032.089200.04430528.04.140860e+09QN57
1145041105399CROWN FRIED CHICKENBronx343EAST 194 STREET10458.07182202727Chicken2019-01-31Violations were cited in the following area(s).10BPlumbing not properly installed or maintained;...N5.0A01/31/201908/30/2019Cycle Inspection / Re-inspection40.863986-73.891047207.015.040502.02016466.02.032820e+09BX05
1145141480048CENTURY SUPER BUFFETQueens2201218HILLSIDE AVENUENaN7184682100Chinese2019-01-31Establishment Closed by DOHMH. Violations wer...06ESanitized equipment or utensil, including in-u...Y90.0NaNNaN08/30/2019Cycle Inspection / Initial Inspection0.0000000.000000NaNNaNNaNNaN4.000000e+00NaN
1145241299744PSARIQueens321036 AVENUE11106.07187866015Greek2019-01-31Violations were cited in the following area(s).02BHot food item not held at or above 140º F.Y18.0NaNNaN08/30/2019Cycle Inspection / Initial Inspection40.756114-73.928781401.026.05500.04007949.04.006010e+09QN68
1145340711301CHICKEN FESTIVALQueens2919DITMARS BOULEVARD11105.07187289696Chicken2019-01-31Violations were cited in the following area(s).08AFacility not vermin proof. Harborage or condit...N17.0B01/31/201908/30/2019Cycle Inspection / Re-inspection40.776718-73.911525401.022.011300.04017714.04.008460e+09QN72
1145450019103LIAN SHENG RESTAURANTBrooklyn57228TH AVE11220.07186872288Chinese2019-01-31Violations were cited in the following area(s).02BHot food item not held at or above 140º F.Y20.0NaNNaN08/30/2019Cycle Inspection / Initial Inspection40.637021-74.007977307.038.010400.03015889.03.008500e+09BK34
1145550049820LOS NISPEROS PERUVIAN RESTAURANTBronx500E 149TH ST10455.07182923377Peruvian2019-01-31Violations were cited in the following area(s).04AFood Protection Certificate not held by superv...Y47.0NaNNaN08/30/2019Cycle Inspection / Initial Inspection40.814823-73.914657201.08.04300.02098210.02.022750e+09BX39
1145641639167GOLDEN KRUST CARIBBEAN BAKERY & GRILLBrooklyn1655PITKIN AVENUE11212.07183427576Caribbean2019-01-31Violations were cited in the following area(s).02GCold food item held above 41º F (smoked fish a...Y9.0A01/31/201908/30/2019Cycle Inspection / Initial Inspection40.669472-73.912162316.041.092400.03080746.03.034980e+09BK81
1145750003771Akaru SushiBrooklyn201WYCKOFF AVE11237.07189287688Japanese2019-01-31Violations were cited in the following area(s).04MLive roaches present in facility's food and/or...Y22.0B01/31/201908/30/2019Cycle Inspection / Re-inspection40.702399-73.916158304.037.044300.03075189.03.032910e+09BK77
1145850015134SAPIENZAQueens16424CROSSBAY BLVD11414.07183234011Delicatessen2019-01-31Establishment Closed by DOHMH. Violations wer...06CFood not protected from potential source of co...Y38.0NaNNaN08/30/2019Cycle Inspection / Initial Inspection40.650263-73.837679410.032.089200.04430528.04.140860e+09QN57
1145950043790PRIMA DONNA PERUVIAN RESTAURANTQueens9018ROOSEVELT AVE11372.07184580554Peruvian2019-01-31Violations were cited in the following area(s).02GCold food item held above 41º F (smoked fish a...Y19.0B01/31/201908/30/2019Cycle Inspection / Re-inspection40.748469-73.875833404.021.046900.04038785.04.015510e+09QN29
1146050045571WING YUM LIN'S RESTAURANTQueens11021JAMAICA AVE11418.07188059868Chinese2019-01-31Violations were cited in the following area(s).02BHot food item not held at or above 140º F.Y21.0NaNNaN08/30/2019Cycle Inspection / Initial Inspection40.696512-73.837693409.032.012800.04192620.04.092240e+09QN54
1146150043907KINGS BAKERYBrooklyn205386TH ST11214.07189753388Bakery2019-01-31Violations were cited in the following area(s).10FNon-food contact surface improperly constructe...N4.0A01/31/201908/30/2019Cycle Inspection / Initial Inspection40.603832-73.996964311.047.028800.03165860.03.063460e+09BK28
1146250087534COMFORT INN & SUITESQueens6030MAURICE AVE11378.07184575555American2019-01-31Violations were cited in the following area(s).10HProper sanitization not provided for utensil w...N31.0NaNNaN08/30/2019Pre-permit (Operational) / Initial Inspection40.729144-73.905007405.030.051500.04054291.04.023650e+09QN30
\n", "

11463 rows × 26 columns

\n", "
" ], "text/plain": [ " CAMIS DBA BORO \\\n", "0 50074557 FISH VILLAGE Queens \n", "1 50086382 IL POSTO Brooklyn \n", "2 41258823 LITTLE CAESARS Bronx \n", "3 50002053 THE LOCAL Queens \n", "4 50055374 FLORA BAR Manhattan \n", "5 50071225 F & M 99 CENTS PIZZA Manhattan \n", "6 50085847 MEMORIES OF SHANGHAI Queens \n", "7 41195691 F & J PINE RESTAURANT Bronx \n", "8 50033574 CHEZ ALAIN RESTAURAUNT Manhattan \n", "9 41024941 LUCIANO'S Brooklyn \n", "10 41258550 SUBWAY Queens \n", "11 41551369 CHA PA'S VIETNAMESE EATERY Manhattan \n", "12 50085424 TAAM TOV RESTAURANT Manhattan \n", "13 41352974 SAKURA 6 JAPANESE CUISINE Brooklyn \n", "14 50082392 ATOMIC WINGS Queens \n", "15 50046198 BUTTERCUP BAKE SHOP Manhattan \n", "16 50046108 BAGELS CONVENIENCE STORE Brooklyn \n", "17 41195691 F & J PINE RESTAURANT Bronx \n", "18 50058627 GLATT CONEY KOSHER CHINESE RESTAURANT Brooklyn \n", "19 41618394 CREATE Queens \n", "20 50060531 FIELDS GOOD CHICKEN Manhattan \n", "21 50038775 AVANT GARDEN Manhattan \n", "22 50056913 SHORTY'S Manhattan \n", "23 40364920 RIZZO'S FINE PIZZA Queens \n", "24 50012623 SLICK WILLIE Brooklyn \n", "25 41471993 NEW MEI MEI CHINESE RESTAURANT Brooklyn \n", "26 40364920 RIZZO'S FINE PIZZA Queens \n", "27 50038775 AVANT GARDEN Manhattan \n", "28 50038775 AVANT GARDEN Manhattan \n", "29 41667296 ABRACADABRA BROOKLYN Brooklyn \n", "... ... ... ... \n", "11433 50047769 LITTLE CAESAR'S Manhattan \n", "11434 50087534 COMFORT INN & SUITES Queens \n", "11435 50045571 WING YUM LIN'S RESTAURANT Queens \n", "11436 50045571 WING YUM LIN'S RESTAURANT Queens \n", "11437 40998581 TRUMP CAFE & GRILL Manhattan \n", "11438 50060606 LAS CATRINAS Queens \n", "11439 50049820 LOS NISPEROS PERUVIAN RESTAURANT Bronx \n", "11440 50063064 YAAR INDIAN RESTAURANT Queens \n", "11441 41299744 PSARI Queens \n", "11442 50002396 ISLAND CZ CAFE Brooklyn \n", "11443 50086570 FOOD STREET RESTAURANT Queens \n", "11444 50040897 TOUS LES JOURS Manhattan \n", "11445 50081834 BAYA BAR Staten Island \n", "11446 50063064 YAAR INDIAN RESTAURANT Queens \n", "11447 41639167 GOLDEN KRUST CARIBBEAN BAKERY & GRILL Brooklyn \n", "11448 41480048 CENTURY SUPER BUFFET Queens \n", "11449 50015134 SAPIENZA Queens \n", "11450 41105399 CROWN FRIED CHICKEN Bronx \n", "11451 41480048 CENTURY SUPER BUFFET Queens \n", "11452 41299744 PSARI Queens \n", "11453 40711301 CHICKEN FESTIVAL Queens \n", "11454 50019103 LIAN SHENG RESTAURANT Brooklyn \n", "11455 50049820 LOS NISPEROS PERUVIAN RESTAURANT Bronx \n", "11456 41639167 GOLDEN KRUST CARIBBEAN BAKERY & GRILL Brooklyn \n", "11457 50003771 Akaru Sushi Brooklyn \n", "11458 50015134 SAPIENZA Queens \n", "11459 50043790 PRIMA DONNA PERUVIAN RESTAURANT Queens \n", "11460 50045571 WING YUM LIN'S RESTAURANT Queens \n", "11461 50043907 KINGS BAKERY Brooklyn \n", "11462 50087534 COMFORT INN & SUITES Queens \n", "\n", " BUILDING STREET ZIPCODE PHONE \\\n", "0 2007 127TH ST 11356.0 6468307299 \n", "1 7409 AVENUE U 11234.0 7182414317 \n", "2 1888 WESTCHESTER AVENUE 10472.0 3476571722 \n", "3 13-02 44TH AVENUE 11101.0 3477385251 \n", "4 945 MADISON AVE 10021.0 6317038780 \n", "5 153 AVENUE C 10009.0 3479166922 \n", "6 6860 AUSTIN ST 11375.0 7188802938 \n", "7 1913 BRONXDALE AVENUE 10462.0 7187925956 \n", "8 2046 7TH AVE 10027.0 2126787820 \n", "9 15 METROTECH CENTER 11201.0 7188556668 \n", "10 5122 NORTHERN BOULEVARD 11377.0 7187793534 \n", "11 314 WEST 52 STREET 10019.0 2129569300 \n", "12 41 W 47TH ST 10036.0 2127688001 \n", "13 837 MANHATTAN AVENUE 11222.0 7183497888 \n", "14 15923 HILLSIDE AVE 11432.0 7184806642 \n", "15 167 MADISON AVE 10016.0 8442253369 \n", "16 4113 AVENUE U 11234.0 7186922929 \n", "17 1913 BRONXDALE AVENUE 10462.0 7187925956 \n", "18 1558 CONEY ISLAND AVE 11230.0 7186767781 \n", "19 3603 30 AVENUE 11103.0 7182040333 \n", "20 304 PARK AVE S 10010.0 2125649805 \n", "21 130 E 7TH ST 10009.0 2127772017 \n", "22 576 9TH AVE 10036.0 2129673055 \n", "23 3013 STEINWAY STREET 11103.0 7187219862 \n", "24 179 MESEROLE AVE 11222.0 7183890090 \n", "25 3566 NOSTRAND AVENUE 11229.0 7187431054 \n", "26 3013 STEINWAY STREET 11103.0 7187219862 \n", "27 130 E 7TH ST 10009.0 2127772017 \n", "28 130 E 7TH ST 10009.0 2127772017 \n", "29 347 BEDFORD AVENUE 11211.0 3478449157 \n", "... ... ... ... ... \n", "11433 377 W 125TH ST 10027.0 5162423711 \n", "11434 6030 MAURICE AVE 11378.0 7184575555 \n", "11435 11021 JAMAICA AVE 11418.0 7188059868 \n", "11436 11021 JAMAICA AVE 11418.0 7188059868 \n", "11437 725 5 AVENUE 10022.0 2127157290 \n", "11438 3202 BROADWAY 11106.0 9177450969 \n", "11439 500 E 149TH ST 10455.0 7182923377 \n", "11440 2255 31ST ST 11105.0 7187210205 \n", "11441 3210 36 AVENUE 11106.0 7187866015 \n", "11442 743 FRANKLIN AVE 11238.0 7185766700 \n", "11443 21545 JAMAICA AVE 11428.0 7184137002 \n", "11444 7 DIVISION ST 10002.0 2129666777 \n", "11445 3830 RICHMOND AVE 10312.0 7182336301 \n", "11446 2255 31ST ST 11105.0 7187210205 \n", "11447 1655 PITKIN AVENUE 11212.0 7183427576 \n", "11448 2201218 HILLSIDE AVENUE NaN 7184682100 \n", "11449 16424 CROSSBAY BLVD 11414.0 7183234011 \n", "11450 343 EAST 194 STREET 10458.0 7182202727 \n", "11451 2201218 HILLSIDE AVENUE NaN 7184682100 \n", "11452 3210 36 AVENUE 11106.0 7187866015 \n", "11453 2919 DITMARS BOULEVARD 11105.0 7187289696 \n", "11454 5722 8TH AVE 11220.0 7186872288 \n", "11455 500 E 149TH ST 10455.0 7182923377 \n", "11456 1655 PITKIN AVENUE 11212.0 7183427576 \n", "11457 201 WYCKOFF AVE 11237.0 7189287688 \n", "11458 16424 CROSSBAY BLVD 11414.0 7183234011 \n", "11459 9018 ROOSEVELT AVE 11372.0 7184580554 \n", "11460 11021 JAMAICA AVE 11418.0 7188059868 \n", "11461 2053 86TH ST 11214.0 7189753388 \n", "11462 6030 MAURICE AVE 11378.0 7184575555 \n", "\n", " CUISINE DESCRIPTION INSPECTION DATE \\\n", "0 Chinese 2019-01-02 \n", "1 Italian 2019-01-02 \n", "2 Pizza 2019-01-02 \n", "3 American 2019-01-02 \n", "4 American 2019-01-02 \n", "5 Pizza 2019-01-02 \n", "6 Chinese/Cuban 2019-01-02 \n", "7 Italian 2019-01-02 \n", "8 African 2019-01-02 \n", "9 American 2019-01-02 \n", "10 Sandwiches 2019-01-02 \n", "11 Vietnamese/Cambodian/Malaysia 2019-01-02 \n", "12 Jewish/Kosher 2019-01-02 \n", "13 Japanese 2019-01-02 \n", "14 Chicken 2019-01-02 \n", "15 Bakery 2019-01-02 \n", "16 Sandwiches/Salads/Mixed Buffet 2019-01-02 \n", "17 Italian 2019-01-02 \n", "18 Jewish/Kosher 2019-01-02 \n", "19 American 2019-01-02 \n", "20 Chicken 2019-01-02 \n", "21 Vegetarian 2019-01-02 \n", "22 American 2019-01-02 \n", "23 Pizza 2019-01-02 \n", "24 American 2019-01-02 \n", "25 Chinese 2019-01-02 \n", "26 Pizza 2019-01-02 \n", "27 Vegetarian 2019-01-02 \n", "28 Vegetarian 2019-01-02 \n", "29 American 2019-01-02 \n", "... ... ... \n", "11433 Pizza 2019-01-31 \n", "11434 American 2019-01-31 \n", "11435 Chinese 2019-01-31 \n", "11436 Chinese 2019-01-31 \n", "11437 American 2019-01-31 \n", "11438 Mexican 2019-01-31 \n", "11439 Peruvian 2019-01-31 \n", "11440 Indian 2019-01-31 \n", "11441 Greek 2019-01-31 \n", "11442 Caribbean 2019-01-31 \n", "11443 Indian 2019-01-31 \n", "11444 Bakery 2019-01-31 \n", "11445 Juice, Smoothies, Fruit Salads 2019-01-31 \n", "11446 Indian 2019-01-31 \n", "11447 Caribbean 2019-01-31 \n", "11448 Chinese 2019-01-31 \n", "11449 Delicatessen 2019-01-31 \n", "11450 Chicken 2019-01-31 \n", "11451 Chinese 2019-01-31 \n", "11452 Greek 2019-01-31 \n", "11453 Chicken 2019-01-31 \n", "11454 Chinese 2019-01-31 \n", "11455 Peruvian 2019-01-31 \n", "11456 Caribbean 2019-01-31 \n", "11457 Japanese 2019-01-31 \n", "11458 Delicatessen 2019-01-31 \n", "11459 Peruvian 2019-01-31 \n", "11460 Chinese 2019-01-31 \n", "11461 Bakery 2019-01-31 \n", "11462 American 2019-01-31 \n", "\n", " ACTION VIOLATION CODE \\\n", "0 Violations were cited in the following area(s). 08C \n", "1 Violations were cited in the following area(s). 08A \n", "2 Violations were cited in the following area(s). 10F \n", "3 Violations were cited in the following area(s). 06D \n", "4 Violations were cited in the following area(s). 04N \n", "5 Violations were cited in the following area(s). 10F \n", "6 Violations were cited in the following area(s). 04L \n", "7 Violations were cited in the following area(s). 04H \n", "8 Violations were cited in the following area(s). 02B \n", "9 Violations were cited in the following area(s). 06E \n", "10 Violations were cited in the following area(s). 06F \n", "11 Violations were cited in the following area(s). 06D \n", "12 Establishment Closed by DOHMH. Violations wer... 05D \n", "13 Establishment Closed by DOHMH. Violations wer... 06C \n", "14 Violations were cited in the following area(s). 08C \n", "15 Violations were cited in the following area(s). 10B \n", "16 Violations were cited in the following area(s). 04N \n", "17 Violations were cited in the following area(s). 08A \n", "18 Violations were cited in the following area(s). 08A \n", "19 Violations were cited in the following area(s). 04H \n", "20 Violations were cited in the following area(s). 04N \n", "21 Violations were cited in the following area(s). 06C \n", "22 Violations were cited in the following area(s). 08A \n", "23 Violations were cited in the following area(s). 04A \n", "24 Violations were cited in the following area(s). 10F \n", "25 Violations were cited in the following area(s). 02B \n", "26 Violations were cited in the following area(s). 10F \n", "27 Violations were cited in the following area(s). 02H \n", "28 Violations were cited in the following area(s). 04C \n", "29 Establishment Closed by DOHMH. Violations wer... 08A \n", "... ... ... \n", "11433 Violations were cited in the following area(s). 10A \n", "11434 Violations were cited in the following area(s). 20D \n", "11435 Violations were cited in the following area(s). 08A \n", "11436 Violations were cited in the following area(s). 09B \n", "11437 Violations were cited in the following area(s). 10F \n", "11438 Violations were cited in the following area(s). 06A \n", "11439 Violations were cited in the following area(s). 10B \n", "11440 Violations were cited in the following area(s). 06C \n", "11441 Violations were cited in the following area(s). 06C \n", "11442 Violations were cited in the following area(s). 08A \n", "11443 Violations were cited in the following area(s). 10B \n", "11444 Violations were cited in the following area(s). 08A \n", "11445 Violations were cited in the following area(s). 06D \n", "11446 Violations were cited in the following area(s). 04N \n", "11447 Violations were cited in the following area(s). 10F \n", "11448 Establishment Closed by DOHMH. Violations wer... 09C \n", "11449 Violations were cited in the following area(s). 18G \n", "11450 Violations were cited in the following area(s). 10B \n", "11451 Establishment Closed by DOHMH. Violations wer... 06E \n", "11452 Violations were cited in the following area(s). 02B \n", "11453 Violations were cited in the following area(s). 08A \n", "11454 Violations were cited in the following area(s). 02B \n", "11455 Violations were cited in the following area(s). 04A \n", "11456 Violations were cited in the following area(s). 02G \n", "11457 Violations were cited in the following area(s). 04M \n", "11458 Establishment Closed by DOHMH. Violations wer... 06C \n", "11459 Violations were cited in the following area(s). 02G \n", "11460 Violations were cited in the following area(s). 02B \n", "11461 Violations were cited in the following area(s). 10F \n", "11462 Violations were cited in the following area(s). 10H \n", "\n", " VIOLATION DESCRIPTION CRITICAL FLAG SCORE \\\n", "0 Pesticide use not in accordance with label or ... N 22.0 \n", "1 Facility not vermin proof. Harborage or condit... N 29.0 \n", "2 Non-food contact surface improperly constructe... N 4.0 \n", "3 Food contact surface not properly washed, rins... Y 7.0 \n", "4 Filth flies or food/refuse/sewage-associated (... Y 11.0 \n", "5 Non-food contact surface improperly constructe... N 3.0 \n", "6 Evidence of mice or live mice present in facil... Y 12.0 \n", "7 Raw, cooked or prepared food is adulterated, c... Y 20.0 \n", "8 Hot food item not held at or above 140º F. Y 23.0 \n", "9 Sanitized equipment or utensil, including in-u... Y 10.0 \n", "10 Wiping cloths soiled or not stored in sanitizi... Y 12.0 \n", "11 Food contact surface not properly washed, rins... Y 17.0 \n", "12 Hand washing facility not provided in or near ... Y 40.0 \n", "13 Food not protected from potential source of co... Y 72.0 \n", "14 Pesticide use not in accordance with label or ... N 2.0 \n", "15 Plumbing not properly installed or maintained;... N 12.0 \n", "16 Filth flies or food/refuse/sewage-associated (... Y 41.0 \n", "17 Facility not vermin proof. Harborage or condit... N 20.0 \n", "18 Facility not vermin proof. Harborage or condit... N 21.0 \n", "19 Raw, cooked or prepared food is adulterated, c... Y 15.0 \n", "20 Filth flies or food/refuse/sewage-associated (... Y 40.0 \n", "21 Food not protected from potential source of co... Y 48.0 \n", "22 Facility not vermin proof. Harborage or condit... N 11.0 \n", "23 Food Protection Certificate not held by superv... Y 26.0 \n", "24 Non-food contact surface improperly constructe... N 21.0 \n", "25 Hot food item not held at or above 140º F. Y 11.0 \n", "26 Non-food contact surface improperly constructe... N 26.0 \n", "27 Food not cooled by an approved method whereby ... Y 48.0 \n", "28 Food worker does not use proper utensil to eli... Y 48.0 \n", "29 Facility not vermin proof. Harborage or condit... N 41.0 \n", "... ... ... ... \n", "11433 Toilet facility not maintained and provided wi... N 5.0 \n", "11434 “Choking first aid” poster not posted. “Alcoho... N NaN \n", "11435 Facility not vermin proof. Harborage or condit... N 21.0 \n", "11436 Thawing procedures improper. N 21.0 \n", "11437 Non-food contact surface improperly constructe... N 7.0 \n", "11438 Personal cleanliness inadequate. Outer garment... Y 15.0 \n", "11439 Plumbing not properly installed or maintained;... N 47.0 \n", "11440 Food not protected from potential source of co... Y 16.0 \n", "11441 Food not protected from potential source of co... Y 18.0 \n", "11442 Facility not vermin proof. Harborage or condit... N 12.0 \n", "11443 Plumbing not properly installed or maintained;... N 11.0 \n", "11444 Facility not vermin proof. Harborage or condit... N 12.0 \n", "11445 Food contact surface not properly washed, rins... Y 5.0 \n", "11446 Filth flies or food/refuse/sewage-associated (... Y 16.0 \n", "11447 Non-food contact surface improperly constructe... N 9.0 \n", "11448 Food contact surface not properly maintained. N 90.0 \n", "11449 Manufacture of frozen dessert not authorized o... N NaN \n", "11450 Plumbing not properly installed or maintained;... N 5.0 \n", "11451 Sanitized equipment or utensil, including in-u... Y 90.0 \n", "11452 Hot food item not held at or above 140º F. Y 18.0 \n", "11453 Facility not vermin proof. Harborage or condit... N 17.0 \n", "11454 Hot food item not held at or above 140º F. Y 20.0 \n", "11455 Food Protection Certificate not held by superv... Y 47.0 \n", "11456 Cold food item held above 41º F (smoked fish a... Y 9.0 \n", "11457 Live roaches present in facility's food and/or... Y 22.0 \n", "11458 Food not protected from potential source of co... Y 38.0 \n", "11459 Cold food item held above 41º F (smoked fish a... Y 19.0 \n", "11460 Hot food item not held at or above 140º F. Y 21.0 \n", "11461 Non-food contact surface improperly constructe... N 4.0 \n", "11462 Proper sanitization not provided for utensil w... N 31.0 \n", "\n", " GRADE GRADE DATE RECORD DATE \\\n", "0 NaN NaN 08/30/2019 \n", "1 NaN NaN 08/30/2019 \n", "2 A 01/02/2019 08/30/2019 \n", "3 A 01/02/2019 08/30/2019 \n", "4 A 01/02/2019 08/30/2019 \n", "5 A 01/02/2019 08/30/2019 \n", "6 A 01/02/2019 08/30/2019 \n", "7 B 01/02/2019 08/30/2019 \n", "8 B 01/02/2019 08/30/2019 \n", "9 A 01/02/2019 08/30/2019 \n", "10 A 01/02/2019 08/30/2019 \n", "11 B 01/02/2019 08/30/2019 \n", "12 NaN NaN 08/30/2019 \n", "13 NaN NaN 08/30/2019 \n", "14 NaN NaN 08/30/2019 \n", "15 A 01/02/2019 08/30/2019 \n", "16 NaN NaN 08/30/2019 \n", "17 B 01/02/2019 08/30/2019 \n", "18 NaN NaN 08/30/2019 \n", "19 NaN NaN 08/30/2019 \n", "20 NaN NaN 08/30/2019 \n", "21 NaN NaN 08/30/2019 \n", "22 A 01/02/2019 08/30/2019 \n", "23 NaN NaN 08/30/2019 \n", "24 B 01/02/2019 08/30/2019 \n", "25 A 01/02/2019 08/30/2019 \n", "26 NaN NaN 08/30/2019 \n", "27 NaN NaN 08/30/2019 \n", "28 NaN NaN 08/30/2019 \n", "29 NaN NaN 08/30/2019 \n", "... ... ... ... \n", "11433 A 01/31/2019 08/30/2019 \n", "11434 NaN NaN 08/30/2019 \n", "11435 NaN NaN 08/30/2019 \n", "11436 NaN NaN 08/30/2019 \n", "11437 A 01/31/2019 08/30/2019 \n", "11438 NaN NaN 08/30/2019 \n", "11439 NaN NaN 08/30/2019 \n", "11440 NaN NaN 08/30/2019 \n", "11441 NaN NaN 08/30/2019 \n", "11442 A 01/31/2019 08/30/2019 \n", "11443 A 01/31/2019 08/30/2019 \n", "11444 A 01/31/2019 08/30/2019 \n", "11445 NaN NaN 08/30/2019 \n", "11446 NaN NaN 08/30/2019 \n", "11447 A 01/31/2019 08/30/2019 \n", "11448 NaN NaN 08/30/2019 \n", "11449 NaN NaN 08/30/2019 \n", "11450 A 01/31/2019 08/30/2019 \n", "11451 NaN NaN 08/30/2019 \n", "11452 NaN NaN 08/30/2019 \n", "11453 B 01/31/2019 08/30/2019 \n", "11454 NaN NaN 08/30/2019 \n", "11455 NaN NaN 08/30/2019 \n", "11456 A 01/31/2019 08/30/2019 \n", "11457 B 01/31/2019 08/30/2019 \n", "11458 NaN NaN 08/30/2019 \n", "11459 B 01/31/2019 08/30/2019 \n", "11460 NaN NaN 08/30/2019 \n", "11461 A 01/31/2019 08/30/2019 \n", "11462 NaN NaN 08/30/2019 \n", "\n", " INSPECTION TYPE Latitude \\\n", "0 Cycle Inspection / Initial Inspection 40.781449 \n", "1 Pre-permit (Operational) / Initial Inspection 40.621321 \n", "2 Cycle Inspection / Re-inspection 40.832928 \n", "3 Cycle Inspection / Initial Inspection 40.749644 \n", "4 Cycle Inspection / Re-inspection 40.773450 \n", "5 Cycle Inspection / Re-inspection 40.725580 \n", "6 Pre-permit (Operational) / Initial Inspection 40.722218 \n", "7 Cycle Inspection / Re-inspection 40.848944 \n", "8 Cycle Inspection / Re-inspection 40.807227 \n", "9 Cycle Inspection / Initial Inspection 40.693700 \n", "10 Cycle Inspection / Initial Inspection 40.753155 \n", "11 Cycle Inspection / Re-inspection 40.763788 \n", "12 Pre-permit (Operational) / Re-inspection 40.757252 \n", "13 Cycle Inspection / Initial Inspection 40.728710 \n", "14 Pre-permit (Operational) / Compliance Inspection 40.707798 \n", "15 Cycle Inspection / Initial Inspection 40.746992 \n", "16 Cycle Inspection / Initial Inspection 40.608936 \n", "17 Cycle Inspection / Re-inspection 40.848944 \n", "18 Cycle Inspection / Initial Inspection 40.619372 \n", "19 Cycle Inspection / Initial Inspection 40.764958 \n", "20 Cycle Inspection / Initial Inspection 40.739999 \n", "21 Cycle Inspection / Initial Inspection 40.726179 \n", "22 Cycle Inspection / Re-inspection 40.758247 \n", "23 Cycle Inspection / Initial Inspection 40.763275 \n", "24 Cycle Inspection / Re-inspection 40.728255 \n", "25 Cycle Inspection / Initial Inspection 40.597078 \n", "26 Cycle Inspection / Initial Inspection 40.763275 \n", "27 Cycle Inspection / Initial Inspection 40.726179 \n", "28 Cycle Inspection / Initial Inspection 40.726179 \n", "29 Cycle Inspection / Initial Inspection 40.712049 \n", "... ... ... \n", "11433 Cycle Inspection / Initial Inspection 40.811085 \n", "11434 Administrative Miscellaneous / Initial Inspection 40.729144 \n", "11435 Cycle Inspection / Initial Inspection 40.696512 \n", "11436 Cycle Inspection / Initial Inspection 40.696512 \n", "11437 Cycle Inspection / Initial Inspection 40.762501 \n", "11438 Cycle Inspection / Initial Inspection 40.761524 \n", "11439 Cycle Inspection / Initial Inspection 40.814823 \n", "11440 Cycle Inspection / Initial Inspection 40.774981 \n", "11441 Cycle Inspection / Initial Inspection 40.756114 \n", "11442 Cycle Inspection / Re-inspection 40.673417 \n", "11443 Pre-permit (Operational) / Re-inspection 40.717381 \n", "11444 Cycle Inspection / Re-inspection 40.714067 \n", "11445 Pre-permit (Operational) / Compliance Inspection 40.544787 \n", "11446 Cycle Inspection / Initial Inspection 40.774981 \n", "11447 Cycle Inspection / Initial Inspection 40.669472 \n", "11448 Cycle Inspection / Initial Inspection 0.000000 \n", "11449 Administrative Miscellaneous / Initial Inspection 40.650263 \n", "11450 Cycle Inspection / Re-inspection 40.863986 \n", "11451 Cycle Inspection / Initial Inspection 0.000000 \n", "11452 Cycle Inspection / Initial Inspection 40.756114 \n", "11453 Cycle Inspection / Re-inspection 40.776718 \n", "11454 Cycle Inspection / Initial Inspection 40.637021 \n", "11455 Cycle Inspection / Initial Inspection 40.814823 \n", "11456 Cycle Inspection / Initial Inspection 40.669472 \n", "11457 Cycle Inspection / Re-inspection 40.702399 \n", "11458 Cycle Inspection / Initial Inspection 40.650263 \n", "11459 Cycle Inspection / Re-inspection 40.748469 \n", "11460 Cycle Inspection / Initial Inspection 40.696512 \n", "11461 Cycle Inspection / Initial Inspection 40.603832 \n", "11462 Pre-permit (Operational) / Initial Inspection 40.729144 \n", "\n", " Longitude Community Board Council District Census Tract BIN \\\n", "0 -73.841413 407.0 19.0 91900.0 4099328.0 \n", "1 -73.905154 318.0 46.0 69602.0 3237484.0 \n", "2 -73.861964 209.0 18.0 7200.0 NaN \n", "3 -73.947487 402.0 26.0 1900.0 4005221.0 \n", "4 -73.964199 108.0 4.0 13000.0 1041666.0 \n", "5 -73.977765 103.0 2.0 2800.0 1004775.0 \n", "6 -73.850433 406.0 29.0 71100.0 4077447.0 \n", "7 -73.862061 211.0 13.0 24600.0 2048074.0 \n", "8 -73.949609 110.0 9.0 22200.0 1058564.0 \n", "9 -73.984786 302.0 33.0 1500.0 3348771.0 \n", "10 -73.908138 402.0 26.0 25500.0 4027255.0 \n", "11 -73.985809 104.0 3.0 13300.0 1075655.0 \n", "12 -73.979967 105.0 4.0 9600.0 1034476.0 \n", "13 -73.953612 301.0 33.0 56100.0 3065102.0 \n", "14 -73.802505 408.0 24.0 44602.0 4209065.0 \n", "15 -73.983503 105.0 2.0 7400.0 1080790.0 \n", "16 -73.923911 318.0 46.0 66200.0 3241899.0 \n", "17 -73.862061 211.0 13.0 24600.0 2048074.0 \n", "18 -73.964163 312.0 44.0 45400.0 3171991.0 \n", "19 -73.917252 401.0 22.0 6502.0 4009272.0 \n", "20 -73.986507 105.0 2.0 5600.0 1016287.0 \n", "21 -73.983869 103.0 2.0 3200.0 1005791.0 \n", "22 -73.992748 104.0 3.0 11500.0 1024934.0 \n", "23 -73.915478 401.0 22.0 14900.0 4011252.0 \n", "24 -73.949203 301.0 33.0 57300.0 3065435.0 \n", "25 -73.941255 315.0 48.0 59402.0 3201579.0 \n", "26 -73.915478 401.0 22.0 14900.0 4011252.0 \n", "27 -73.983869 103.0 2.0 3200.0 1005791.0 \n", "28 -73.983869 103.0 2.0 3200.0 1005791.0 \n", "29 -73.962832 301.0 34.0 55100.0 3342036.0 \n", "... ... ... ... ... ... \n", "11433 -73.953334 109.0 9.0 20901.0 1059320.0 \n", "11434 -73.905007 405.0 30.0 51500.0 4054291.0 \n", "11435 -73.837693 409.0 32.0 12800.0 4192620.0 \n", "11436 -73.837693 409.0 32.0 12800.0 4192620.0 \n", "11437 -73.974287 105.0 4.0 11202.0 1035794.0 \n", "11438 -73.924461 401.0 22.0 5900.0 4008327.0 \n", "11439 -73.914657 201.0 8.0 4300.0 2098210.0 \n", "11440 -73.912076 401.0 22.0 11500.0 4017050.0 \n", "11441 -73.928781 401.0 26.0 5500.0 4007949.0 \n", "11442 -73.956963 308.0 35.0 21900.0 3031390.0 \n", "11443 -73.739534 413.0 23.0 56600.0 4226330.0 \n", "11444 -73.997075 103.0 1.0 800.0 1003526.0 \n", "11445 -74.165546 503.0 51.0 17011.0 5073924.0 \n", "11446 -73.912076 401.0 22.0 11500.0 4017050.0 \n", "11447 -73.912162 316.0 41.0 92400.0 3080746.0 \n", "11448 0.000000 NaN NaN NaN NaN \n", "11449 -73.837679 410.0 32.0 89200.0 4430528.0 \n", "11450 -73.891047 207.0 15.0 40502.0 2016466.0 \n", "11451 0.000000 NaN NaN NaN NaN \n", "11452 -73.928781 401.0 26.0 5500.0 4007949.0 \n", "11453 -73.911525 401.0 22.0 11300.0 4017714.0 \n", "11454 -74.007977 307.0 38.0 10400.0 3015889.0 \n", "11455 -73.914657 201.0 8.0 4300.0 2098210.0 \n", "11456 -73.912162 316.0 41.0 92400.0 3080746.0 \n", "11457 -73.916158 304.0 37.0 44300.0 3075189.0 \n", "11458 -73.837679 410.0 32.0 89200.0 4430528.0 \n", "11459 -73.875833 404.0 21.0 46900.0 4038785.0 \n", "11460 -73.837693 409.0 32.0 12800.0 4192620.0 \n", "11461 -73.996964 311.0 47.0 28800.0 3165860.0 \n", "11462 -73.905007 405.0 30.0 51500.0 4054291.0 \n", "\n", " BBL NTA \n", "0 4.041720e+09 QN23 \n", "1 3.084150e+09 BK45 \n", "2 2.000000e+00 BX55 \n", "3 4.004460e+09 QN31 \n", "4 1.013890e+09 MN40 \n", "5 1.003920e+09 MN28 \n", "6 4.032340e+09 QN17 \n", "7 2.042630e+09 BX49 \n", "8 1.019280e+09 MN11 \n", "9 3.020470e+09 BK38 \n", "10 4.011920e+09 QN63 \n", "11 1.010420e+09 MN15 \n", "12 1.012630e+09 MN17 \n", "13 3.025730e+09 BK76 \n", "14 4.097690e+09 QN61 \n", "15 1.008620e+09 MN17 \n", "16 3.085410e+09 BK45 \n", "17 2.042630e+09 BX49 \n", "18 3.065460e+09 BK46 \n", "19 4.006300e+09 QN70 \n", "20 1.008510e+09 MN13 \n", "21 1.004340e+09 MN22 \n", "22 1.010320e+09 MN15 \n", "23 4.006800e+09 QN70 \n", "24 3.026010e+09 BK76 \n", "25 3.073860e+09 BK17 \n", "26 4.006800e+09 QN70 \n", "27 1.004340e+09 MN22 \n", "28 1.004340e+09 MN22 \n", "29 3.024310e+09 BK73 \n", "... ... ... \n", "11433 1.019520e+09 MN09 \n", "11434 4.023650e+09 QN30 \n", "11435 4.092240e+09 QN54 \n", "11436 4.092240e+09 QN54 \n", "11437 1.012928e+09 MN17 \n", "11438 4.006120e+09 QN70 \n", "11439 2.022750e+09 BX39 \n", "11440 4.008330e+09 QN72 \n", "11441 4.006010e+09 QN68 \n", "11442 3.012380e+09 BK61 \n", "11443 4.106080e+09 QN34 \n", "11444 1.002810e+09 MN27 \n", "11445 5.055910e+09 SI01 \n", "11446 4.008330e+09 QN72 \n", "11447 3.034980e+09 BK81 \n", "11448 4.000000e+00 NaN \n", "11449 4.140860e+09 QN57 \n", "11450 2.032820e+09 BX05 \n", "11451 4.000000e+00 NaN \n", "11452 4.006010e+09 QN68 \n", "11453 4.008460e+09 QN72 \n", "11454 3.008500e+09 BK34 \n", "11455 2.022750e+09 BX39 \n", "11456 3.034980e+09 BK81 \n", "11457 3.032910e+09 BK77 \n", "11458 4.140860e+09 QN57 \n", "11459 4.015510e+09 QN29 \n", "11460 4.092240e+09 QN54 \n", "11461 3.063460e+09 BK28 \n", "11462 4.023650e+09 QN30 \n", "\n", "[11463 rows x 26 columns]" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_jan" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "How many rows are in this new dataframe? Recall we can find this out with the `.shape` property." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(11463, 26)" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_jan.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Plot the histogram of the January inspection scores." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFA5JREFUeJzt3W+QXfV93/H3J2CTBnWMKMlWEUxFWzUdbBoMGsDjPFjVDQicCfFMxgPDYLDxKA9g6rTMJMKe1q5dZtSpY9eeODRqUMGNy5Y6dq0BOYyiomb8AAxyCeKPKaqRizQyxAVjy85kovTbB/esfS3v7t3du7v3Xv3er5k7957f+fe9P+3dz57fOfcoVYUkqT0/NeoCJEmjYQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGnXmqAtYyHnnnVebNm0aejvf//73Ofvss4cvaI1MWr0weTVPWr0weTVb7+qbr+aDBw9+u6p+duAGqmpsH5dddlmthEceeWRFtrNWJq3eqsmredLqrZq8mq139c1XM/BELeJ37MAhoCQXJHkkybNJnknyga79I0mOJXmye1zbt86dSQ4neT7J1X3t27q2w0l2LDLkJEmrYDFDQCeBO6rqa0n+JnAwyb5u3ier6uP9Cye5CLgeeDPw88CfJPkH3ezPAL8MHAUeT7Knqp5diTciSVqagQFQVceB493r7yV5Dti4wCrXATNV9ZfAi0kOA5d38w5X1TcAksx0yxoAkjQCS7oKKMkm4K3AY13T7UmeSrI7yfqubSPwUt9qR7u2+dolSSOQWuT/B5BkHfA/gLuq6gtJpoBvAwV8DNhQVe9L8rvAo1X1h9169wBf7jazrare37XfBFxRVbefsp/twHaAqampy2ZmZoZ9j5w4cYJ169YNvZ21Mmn1wuTVPGn1wuTVbL2rb76at27derCqtgzcwGLOFANvAB4G/vk88zcBT3ev7wTu7Jv3MPC27vFwX/uPLTfXw6uAJsek1Txp9VZNXs3Wu/rW4iqgAPcAz1XVJ/raN/Qt9i7g6e71HuD6JGcluRDYDHwVeBzYnOTCJG+kd6J4z8CEkiStisVcBfR24CbgUJInu7YPAjckuYTeENAR4DcAquqZJA/QO7l7Eritqv4aIMnt9I4IzgB2V9UzK/heJElLsJirgL4CZI5ZexdY5y7grjna9y60niRp7Yz1rSDG1aYdDy04/8jOd65RJZK0fN4MTpIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktSogQGQ5IIkjyR5NskzST7QtZ+bZF+SF7rn9V17knw6yeEkTyW5tG9bN3fLv5Dk5tV7W5KkQRZzBHASuKOqLgKuBG5LchGwA9hfVZuB/d00wDXA5u6xHbgbeoEBfBi4Argc+PBsaEiS1t7AAKiq41X1te7194DngI3AdcB93WL3Ab/Wvb4O+Gz1PAqck2QDcDWwr6perarXgH3AthV9N5KkRVvSOYAkm4C3Ao8BU1V1vJv1LWCqe70ReKlvtaNd23ztkqQROHOxCyZZB/wR8JtV9d0kP5xXVZWkVqKgJNvpDR0xNTXFgQMHht7miRMnVmQ7s+64+OSC84fd10rXuxYmreZJqxcmr2brXX3D1ryoAEjyBnq//D9XVV/oml9OsqGqjndDPK907ceAC/pWP79rOwZMn9L+E5VX1S5gF8CWLVtqenr61EWW7MCBA6zEdmbdsuOhBecfuXG4fa10vWth0mqetHph8mq23tU3bM2LuQoowD3Ac1X1ib5Ze4DZK3luBr7U1/6e7mqgK4HXu6Gih4GrkqzvTv5e1bVJkkZgMUcAbwduAg4lebJr+yCwE3ggya3AN4F3d/P2AtcCh4EfAO8FqKpXk3wMeLxb7qNV9eqKvAtJ0pINDICq+gqQeWa/Y47lC7htnm3tBnYvpUBJ0urwm8CS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGjUwAJLsTvJKkqf72j6S5FiSJ7vHtX3z7kxyOMnzSa7ua9/WtR1OsmPl34okaSkWcwRwL7BtjvZPVtUl3WMvQJKLgOuBN3fr/F6SM5KcAXwGuAa4CLihW1aSNCJnDlqgqv40yaZFbu86YKaq/hJ4Mclh4PJu3uGq+gZAkplu2WeXXLEkaUWkqgYv1AuAB6vqLd30R4BbgO8CTwB3VNVrSX4XeLSq/rBb7h7gy91mtlXV+7v2m4Arqur2Ofa1HdgOMDU1ddnMzMwQb6/nxIkTrFu3bujtzDp07PUF51+88U1DbX+l610Lk1bzpNULk1ez9a6++WreunXrwaraMmj9gUcA87gb+BhQ3fPvAO9b5rZ+TFXtAnYBbNmypaanp4fe5oEDB1iJ7cy6ZcdDC84/cuNw+1rpetfCpNU8afXC5NVsvatv2JqXFQBV9fLs6yT/AXiwmzwGXNC36PldGwu0S5JGYFmXgSbZ0Df5LmD2CqE9wPVJzkpyIbAZ+CrwOLA5yYVJ3kjvRPGe5ZctSRrWwCOAJPcD08B5SY4CHwamk1xCbwjoCPAbAFX1TJIH6J3cPQncVlV/3W3nduBh4Axgd1U9s+LvRpK0aIu5CuiGOZrvWWD5u4C75mjfC+xdUnWSpFXjN4ElqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSo5Z7K4jT3qYBt3sYZt0jO9+57G1L0krxCECSGmUASFKjDABJapQBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjBgZAkt1JXknydF/buUn2JXmhe17ftSfJp5McTvJUkkv71rm5W/6FJDevztuRJC3WYo4A7gW2ndK2A9hfVZuB/d00wDXA5u6xHbgbeoEBfBi4Argc+PBsaEiSRuPMQQtU1Z8m2XRK83XAdPf6PuAA8Ntd+2erqoBHk5yTZEO37L6qehUgyT56oXL/0O+gMZt2PLTg/CM737lGlUiadMs9BzBVVce7198CprrXG4GX+pY72rXN1y5JGpH0/lgfsFDvCODBqnpLN/2dqjqnb/5rVbU+yYPAzqr6Ste+n96RwTTw01X1r7v2fwH8RVV9fI59bac3fMTU1NRlMzMzQ71BgBMnTrBu3bolrXPo2OtD73c+F29804LzF6p3UF2Dtr1altPHozRp9cLk1Wy9q2++mrdu3XqwqrYMWn/gENA8Xk6yoaqOd0M8r3Ttx4AL+pY7v2s7xo+GjGbbD8y14araBewC2LJlS01PT8+12JIcOHCApW7nlgFDLcM4cuP0gvMXqndQXYO2vVqW08ejNGn1wuTVbL2rb9ialzsEtAeYvZLnZuBLfe3v6a4GuhJ4vRsqehi4Ksn67uTvVV2bJGlEBh4BJLmf3l/v5yU5Su9qnp3AA0luBb4JvLtbfC9wLXAY+AHwXoCqejXJx4DHu+U+OntCWJI0Gou5CuiGeWa9Y45lC7htnu3sBnYvqTpJ0qrxm8CS1CgDQJIaZQBIUqMMAElqlAEgSY1a7hfBNISF7ufjvXwkrRWPACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmN8otgY2bTjoe44+KTq/o/kkkSeAQgSc0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWqUASBJjTIAJKlRBoAkNWqoAEhyJMmhJE8meaJrOzfJviQvdM/ru/Yk+XSSw0meSnLpSrwBSdLyrMQRwNaquqSqtnTTO4D9VbUZ2N9NA1wDbO4e24G7V2DfkqRlWo0hoOuA+7rX9wG/1tf+2ep5FDgnyYZV2L8kaRFSVctfOXkReA0o4PeraleS71TVOd38AK9V1TlJHgR2VtVXunn7gd+uqidO2eZ2ekcITE1NXTYzM7Ps+madOHGCdevWLWmdQ8deH3q/yzX1N+Dlv1jeuhdvfNPKFrNIy+njUZq0emHyarbe1TdfzVu3bj3YNyozrzOH3P8vVdWxJD8H7Evy9f6ZVVVJlpQwVbUL2AWwZcuWmp6eHrJEOHDgAEvdzi07Hhp6v8t1x8Un+Z1Dy/unOXLj9MoWs0jL6eNRmrR6YfJqtt7VN2zNQw0BVdWx7vkV4IvA5cDLs0M73fMr3eLHgAv6Vj+/a5MkjcCyjwCSnA38VFV9r3t9FfBRYA9wM7Cze/5St8oe4PYkM8AVwOtVdXyY4rU0mwYc1RzZ+c41qkTSOBhmCGgK+GJvmJ8zgf9cVX+c5HHggSS3At8E3t0tvxe4FjgM/AB47xD7liQNadkBUFXfAH5xjvb/C7xjjvYCblvu/rQ4g/7Kl6RZfhNYkho17FVAE8u/lCW1ziMASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS1KhmLwPVT1ro0lhvEyGdfjwCkKRGeQSgRRn0xbl7t529RpVIWikeAUhSowwASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlLeC0Io4dOx1blnm/7Psjeak0TitA2D2/jV3XHxy2b+cJOl05RCQJDXqtD4C0GQYdKdRh4ik1eERgCQ1ygCQpEY5BKSJ5vCRtHweAUhSowwASWqUQ0Aae4OGeSQtj0cAktQojwB0Wpvv6GEx3w73BLJOd2seAEm2AZ8CzgD+oKp2rnUN0mJ4hZFOd2saAEnOAD4D/DJwFHg8yZ6qenYt65BGzXDROFjrI4DLgcNV9Q2AJDPAdYABoNPKsCeu51p/dtjKcNBKWesA2Ai81Dd9FLhijWuQVsSork5azf0OCpeF9j2uwbSaR1vDbHscjgJTVau+kx/uLPl1YFtVvb+bvgm4oqpu71tmO7C9m/wF4PkV2PV5wLdXYDtrZdLqhcmredLqhcmr2XpX33w1/52q+tlBK6/1EcAx4IK+6fO7th+qql3ArpXcaZInqmrLSm5zNU1avTB5NU9avTB5NVvv6hu25rX+HsDjwOYkFyZ5I3A9sGeNa5AkscZHAFV1MsntwMP0LgPdXVXPrGUNkqSeNf8eQFXtBfau8W5XdEhpDUxavTB5NU9avTB5NVvv6huq5jU9CSxJGh/eC0iSGnVaB0CSbUmeT3I4yY5R1zOXJBckeSTJs0meSfKBrv3cJPuSvNA9rx91rf2SnJHkfyZ5sJu+MMljXV//l+4k/9hIck6Szyf5epLnkrxtnPs4yT/rfh6eTnJ/kp8etz5OsjvJK0me7mubs0/T8+mu9qeSXDom9f7b7mfiqSRfTHJO37w7u3qfT3L1Wtc7X8198+5IUknO66aX3MenbQD03XbiGuAi4IYkF422qjmdBO6oqouAK4Hbujp3APurajOwv5seJx8Anuub/jfAJ6vq7wOvAbeOpKr5fQr446r6h8Av0qt9LPs4yUbgnwJbquot9C6YuJ7x6+N7gW2ntM3Xp9cAm7vHduDuNaqx3738ZL37gLdU1T8C/hdwJ0D3GbweeHO3zu91v1PW2r38ZM0kuQC4Cvg/fc1L7+OqOi0fwNuAh/um7wTuHHVdi6j7S/TulfQ8sKFr2wA8P+ra+mo8n96H+x8DDwKh92WUM+fq+1E/gDcBL9Kd8+prH8s+5kffmD+X3oUaDwJXj2MfA5uApwf1KfD7wA1zLTfKek+Z9y7gc93rH/t9Qe/KxbeNQx93bZ+n94fMEeC85fbxaXsEwNy3ndg4oloWJckm4K3AY8BUVR3vZn0LmBpRWXP5d8BvAf+vm/5bwHeq6mQ3PW59fSHw58B/7Iat/iDJ2YxpH1fVMeDj9P66Ow68DhxkvPt41nx9Ogmfx/cBX+5ej229Sa4DjlXVn50ya8k1n84BMFGSrAP+CPjNqvpu/7zqxflYXK6V5FeAV6rq4KhrWYIzgUuBu6vqrcD3OWW4Z8z6eD29myReCPw8cDZzDAOMu3Hq00GSfIjecOznRl3LQpL8DPBB4F+uxPZO5wAYeNuJcZHkDfR++X+uqr7QNb+cZEM3fwPwyqjqO8XbgV9NcgSYoTcM9CngnCSz3ysZt74+Chytqse66c/TC4Rx7eN/ArxYVX9eVX8FfIFev49zH8+ar0/H9vOY5BbgV4Abu9CC8a3379H7w+DPus/g+cDXkvxtllHz6RwAE3HbiSQB7gGeq6pP9M3aA9zcvb6Z3rmBkauqO6vq/KraRK9P/3tV3Qg8Avx6t9jY1AtQVd8CXkryC13TO+jdgnws+5je0M+VSX6m+/mYrXds+7jPfH26B3hPd6XKlcDrfUNFI5Pef1D1W8CvVtUP+mbtAa5PclaSC+mdWP3qKGrsV1WHqurnqmpT9xk8Clza/YwvvY9HcVJjDU+eXEvvzP7/Bj406nrmqfGX6B0mPwU82T2upTeuvh94AfgT4NxR1zpH7dPAg93rv0vvA3IY+K/AWaOu75RaLwGe6Pr5vwHrx7mPgX8FfB14GvhPwFnj1sfA/fTOUfxV94vo1vn6lN6FAp/pPouH6F3hNA71HqY3bj772fv3fct/qKv3eeCacenjU+Yf4UcngZfcx34TWJIadToPAUmSFmAASFKjDABJapQBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUqP8PJLTbiJsU7ogAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df_jan[\"SCORE\"].hist(bins = 40)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Does the histogram look like either of the parametric distributions?\n", "\n", "It has some characteristics of an exponential distribution, but in this lab we will treat this sample as its own non-parametric distribution.\n", "\n", "We want to know what range of values are likely for its mean. To find this, we will *re-sample* from the sample, meaning we will create new samples of the same size by *sampling with replacement* from the original sample. For each of the new samples, we will compute the mean." ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "# create an empty list\n", "sample_means_jan = []\n", "# loop to create 500 samples\n", "for i in range(500):\n", " # sample once from the SCORE column with replacement\n", " sample = df_jan[\"SCORE\"].sample(11463, replace = True)\n", " # compute the mean of the new sample\n", " sample_mean = sample.mean()\n", " # add the mean to the list\n", " sample_means_jan.append(sample_mean)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Plot a histogram of the sample means. Remember to convert `sample_means_jan` into a Pandas Series first." ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEjFJREFUeJzt3X+MZXdZx/H3Q39I7UB3S/G6bqtT0lKsTCjstYKIzLQsVmrsmpAKqTjF6vyhEIxrdNXEaKLJAhasgT/cUGQwwLSprbtpgbKuHY2mrd2llaVdy5ZmK122W4FtYUojDjz+MWdhWGZ775177r1zv/f9SiZzzrnnx/Nkzn72O2fOuTcyE0nS8HveoAuQJNXDQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQV4tR+Huycc87J8fHxfh6yVs888wxnnnnmoMvoq1HredT6BXseBvv27ftKZr641XotAz0iLgJuWrboJcCfAh+tlo8Dh4CrM/PYc+1rfHycvXv3tjrkmjU/P8/k5OSgy+irUet51PoFex4GEfFYO+u1vOSSmQ9n5iWZeQmwCfgmcBuwDdiTmRcCe6p5SdKAdHoN/XLgi5n5GHAVMFstnwW21FmYJKkznQb6W4BPVNONzDxSTT8BNGqrSpLUsWj37XMj4nTgy8BPZebRiHgqM9cte/1YZq5fYbsZYAag0Whsmpubq6fyAVhYWGBsbGzQZfTVqPU8av2CPQ+DqampfZnZbLVeJ3e5/CLw2cw8Ws0fjYgNmXkkIjYAT660UWbuAHYANJvNHKY/RJxo2P6QUodR63nU+gV7Lkknl1zeyvcutwDsAqar6WlgZ11FSZI611agR8SZwGbg1mWLtwObI+Ig8IZqXpI0IG1dcsnMZ4AXnbDsqyzd9SJJWgN89F+SCtHXR/+ltWp82x0AbJ1Y5Npqul2Htl/Zi5KkjjlCl6RCGOiSVAgDXZIKYaBLUiEMdEkqhHe5aE0Z7/AOE0nf4whdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEG0FekSsi4hbIuK/IuJARLwmIs6OiN0RcbD6vr7XxUqSTq7dEfoNwKcz82XAK4ADwDZgT2ZeCOyp5iVJA9Iy0CPiLODngRsBMvNbmfkUcBUwW602C2zpVZGSpNbaGaGfD/wP8HcRcX9EfCgizgQamXmkWucJoNGrIiVJrUVmPvcKEU3gHuC1mXlvRNwAfB14Z2auW7bescz8gevoETEDzAA0Go1Nc3NzddbfVwsLC4yNjQ26jL7qd8/7Dz/dt2OtpHEGHH22v8ec2HhWfw94As/rtW9qampfZjZbrddOoP8ocE9mjlfzr2PpevkFwGRmHomIDcB8Zl70XPtqNpu5d+/eNltYe+bn55mcnBx0GX3V754H/RF0WycWuX5/fz+Z8dD2K/t6vBN5Xq99EdFWoLe85JKZTwBfiojjYX058BCwC5iulk0DO1dZqySpBu0ORd4JfCwiTgceBd7O0n8GN0fEdcBjwNW9KVGS1I62Aj0zHwBWGu5fXm85kqTV8klRSSqEgS5JhTDQJakQBrokFaK/N9xqKCy/F3zrxCLXdnhv+KDvq5ZGlSN0SSqEgS5JhfCSi2o36Mf3pVHlCF2SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFaKtt8+NiEPAN4BvA4uZ2YyIs4GbgHHgEHB1Zh7rTZmSpFY6GaFPZeYlmdms5rcBezLzQmBPNS9JGpBuLrlcBcxW07PAlu7LkSStVruBnsBnImJfRMxUyxqZeaSafgJo1F6dJKltkZmtV4rYmJmHI+JHgN3AO4Fdmblu2TrHMnP9CtvOADMAjUZj09zcXG3F99vCwgJjY2ODLqPn9h9++rvTjTPg6LMDLKbPBtHvxMaz+nvAE4zKeb3csPU8NTW1b9nl7pNqK9C/b4OIPwMWgN8CJjPzSERsAOYz86Ln2rbZbObevXs7Ot5aMj8/z+Tk5KDL6Lnlnwm6dWKR6/ePzkfPDqLfQ9uv7OvxTjQq5/Vyw9ZzRLQV6C0vuUTEmRHxguPTwBuBzwO7gOlqtWlg5+rLlSR1q52hSAO4LSKOr//xzPx0RNwH3BwR1wGPAVf3rkxJUistAz0zHwVescLyrwKX96IoSVLnfFJUkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRBtB3pEnBIR90fE7dX8+RFxb0Q8EhE3RcTpvStTktRKJyP0dwEHls2/G3h/Zl4AHAOuq7MwSVJn2gr0iDgXuBL4UDUfwGXALdUqs8CWXhQoSWpPuyP0vwb+APhONf8i4KnMXKzmHwc21lybJKkDp7ZaISJ+CXgyM/dFxGSnB4iIGWAGoNFoMD8/3+ku1oyFhYWhrr9dWycWvzvdOOP750s3iH4HfU6Nynm9XKk9twx04LXAL0fEm4DnAy8EbgDWRcSp1Sj9XODwShtn5g5gB0Cz2czJyck66h6I+fl5hrn+dl277Y7vTm+dWOT6/e2cJmUYRL+Hrpns6/FONCrn9XKl9tzykktm/lFmnpuZ48BbgH/OzGuAu4A3V6tNAzt7VqUkqaVu7kP/Q+D3IuIRlq6p31hPSZKk1ejod8vMnAfmq+lHgUvrL0mStBo+KSpJhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklSI0fnkghEzvuxDKiSNBkfoklQIA12SCmGgS1IhDHRJKoSBLkmF8C4XacC6uSPp0PYra6xEw84RuiQVwkCXpEK0DPSIeH5E/EdE/GdEPBgRf14tPz8i7o2IRyLipog4vfflSpJOpp0R+v8Cl2XmK4BLgCsi4tXAu4H3Z+YFwDHgut6VKUlqpWWg55KFava06iuBy4BbquWzwJaeVChJaktkZuuVIk4B9gEXAB8E3gvcU43OiYjzgE9l5stX2HYGmAFoNBqb5ubm6qu+zxYWFhgbGxt0GW3Zf/jpWvbTOAOOPlvLrobCsPU7sfGsrvcxTOd1XYat56mpqX2Z2Wy1Xlu3LWbmt4FLImIdcBvwsnYLycwdwA6AZrOZk5OT7W665szPzzMs9V9b05tzbZ1Y5Pr9o3N367D1e+iaya73MUzndV1K7bmju1wy8yngLuA1wLqIOH7mnwscrrk2SVIH2rnL5cXVyJyIOAPYDBxgKdjfXK02DezsVZGSpNba+d1yAzBbXUd/HnBzZt4eEQ8BcxHxF8D9wI09rFOS1ELLQM/MzwGvXGH5o8ClvShKktQ5nxSVpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKkTLQI+I8yLiroh4KCIejIh3VcvPjojdEXGw+r6+9+VKkk6mnRH6IrA1My8GXg38TkRcDGwD9mTmhcCeal6SNCAtAz0zj2TmZ6vpbwAHgI3AVcBstdossKVXRUqSWuvoGnpEjAOvBO4FGpl5pHrpCaBRa2WSpI5EZra3YsQY8C/AX2bmrRHxVGauW/b6scz8gevoETEDzAA0Go1Nc3Nz9VQ+AAsLC4yNjQ26jLbsP/x0LftpnAFHn61lV0Nh2Pqd2HhW1/sYpvO6LsPW89TU1L7MbLZar61Aj4jTgNuBOzPzfdWyh4HJzDwSERuA+cy86Ln202w2c+/evW01sBbNz88zOTk56DLaMr7tjlr2s3Vikev3n1rLvobBsPV7aPuVXe9jmM7rugxbzxHRVqC3c5dLADcCB46HeWUXMF1NTwM7V1OoJKke7QxFXgu8DdgfEQ9Uy/4Y2A7cHBHXAY8BV/emxNFV1yhb0mhoGeiZ+W9AnOTly+stR5K0Wj4pKkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqxPB8eKKkH9DNp1rV8XmkWlscoUtSIQx0SSqEgS5JhTDQJakQBrokFaJloEfEhyPiyYj4/LJlZ0fE7og4WH1f39syJUmttDNC/whwxQnLtgF7MvNCYE81L0kaoJaBnpn/CnzthMVXAbPV9Cywpea6JEkdisxsvVLEOHB7Zr68mn8qM9dV0wEcOz6/wrYzwAxAo9HYNDc3V0/lA7CwsMDY2Fjfjrf/8NN9O9bJNM6Ao88Ouor+GaV+JzaeBfT/vF4Lhq3nqampfZnZbLVe10+KZmZGxEn/V8jMHcAOgGazmZOTk90ecmDm5+fpZ/3XdvEUYF22Tixy/f7ReaB4lPo9dM0k0P/zei0otefV3uVyNCI2AFTfn6yvJEnSaqw20HcB09X0NLCznnIkSavVzm2LnwDuBi6KiMcj4jpgO7A5Ig4Cb6jmJUkD1PJiYWa+9SQvXV5zLZKkLvikqCQVwkCXpEIY6JJUiNG44XaAuvlEGUnqhCN0SSqEgS5JhTDQJakQXkNvYfk18K0Ti2vi/VUkaSWO0CWpEAa6JBXCSy7SiDp+OXE1lxIPbb+ylmOvRrfHLpkjdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhhubBIh9EkNYO3+d/bXKELkmF6CrQI+KKiHg4Ih6JiG11FSVJ6tyqL7lExCnAB4HNwOPAfRGxKzMfqqu4uvjroaRuDcNl325G6JcCj2Tmo5n5LWAOuKqesiRJneom0DcCX1o2/3i1TJI0AJGZq9sw4s3AFZn5m9X824Cfycx3nLDeDDBTzV4EPLz6cgfuHOArgy6iz0at51HrF+x5GPxEZr641Urd3LZ4GDhv2fy51bLvk5k7gB1dHGfNiIi9mdkcdB39NGo9j1q/YM8l6eaSy33AhRFxfkScDrwF2FVPWZKkTq16hJ6ZixHxDuBO4BTgw5n5YG2VSZI60tWTopn5SeCTNdUyDIq4dNShUet51PoFey7Gqv8oKklaW3z0X5IKYaADEXFeRNwVEQ9FxIMR8a5q+dkRsTsiDlbf159k++lqnYMRMd3f6lenm54j4pKIuLva7nMR8av976Az3f6Mq3VfGBGPR8QH+lf56tVwXv94RHwmIg5U+xjvZ/2dqqHf91TbHYiIv4mI6G8HNcjMkf8CNgCvqqZfAHwBuBh4D7CtWr4NePcK254NPFp9X19Nrx90Tz3u+aXAhdX0jwFHgHWD7qlX/S7bxw3Ax4EPDLqffvQMzAObq+kx4IcH3VOv+gV+Fvh3lm7wOAW4G5gcdE+dfjlCBzLzSGZ+tpr+BnCApaderwJmq9VmgS0rbP4LwO7M/FpmHgN2A1f0vurudNNzZn4hMw9W018GngRaPvQwSF3+jImITUAD+Ezvq61HNz1HxMXAqZm5u9p+ITO/2ZfCV6nLn3ECzwdOB34IOA042uua62agn6D6tfKVwL1AIzOPVC89wdI/6BMN/VsgrKLn5dteytI/gi/2sMRaddpvRDwPuB74/T6VWLtV/IxfCjwVEbdGxP0R8d7qDfmGQqf9ZubdwF0s/bZ5BLgzMw/0pdgaGejLRMQY8A/A72bm15e/lku/lxV3S1A3PUfEBuDvgbdn5nd6WmhNVtnvbwOfzMzH+1Bi7VbZ86nA61j6T+yngZcA1/a20nqspt+IuAD4SZaeeN8IXBYRr+tDubUy0CsRcRpLJ8HHMvPWavHRKrSOh9eTK2za1lsgrEVd9ExEvBC4A/iTzLynH/V2q4t+XwO8IyIOAX8F/HpEbO9DyV3roufHgQdy6d1UF4F/BF7Vj5q70UW/vwLcU11aWgA+xdLPfagY6ED11+wbgQOZ+b5lL+0Cjt+1Mg3sXGHzO4E3RsT66q/nb6yWrWnd9Fy91cNtwEcz85Ze11qHbvrNzGsy88czc5ylEetHM3PNf6BLl+f1fcC6iDj+t5HLgDX3WQfLddnvfwOvj4hTq/8UXs/SNfjhMui/yq6FL+DnWPo17HPAA9XXm4AXAXuAg8A/AWdX6zeBDy3b/jeAR6qvtw+6n173DPwa8H/LtnsAuGTQPfXyZ7xsP9cyPHe5dHteb6623Q98BDh90D31ql+W7mz5W5ZC/CHgfYPuZzVfPikqSYXwkoskFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEP8PmjDGBgoxiGAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pd.Series(sample_means_jan).hist(bins = 20)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This histogram is approximating the *sampling distribution of the mean*.\n", "\n", "What parametric distribution does this histogram look like? Do you remember why?\n", "\n", "Let's find the range containing 95% of the sample means, which is also called the *95% confidence interval*." ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "20.072946634859385" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Find the 2.5 percentile of the means. Only 2.5% of the sample means are smaller than this number.\n", "pd.Series(sample_means_jan).quantile(0.025)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "20.595943259864725" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Find the 97.5 percentile of the means. 97.5% of the sample means are smaller than this number, \n", "# so only 2.5% of the sample means are larger than this number.\n", "pd.Series(sample_means_jan).quantile(0.975)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Therefore, the 95% confidence interval is approximately [20.0, 20.6]. The interpretation of a confidence interval is if we sample from a distribution and compute the 95% confidence interval, then 95% of the time this confidence interval will contain the true mean of the distribution.\n", "\n", "Now, compute the 95% confidence interval for the mean of the July scores.\n", "\n", "First, create a dataframe containing only the July inspections and find the number of rows." ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "july_filter = df[\"INSPECTION DATE\"].dt.month == 7\n", "df_july = df[july_filter]" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(15102, 26)" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_july.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next create 500 bootstrap samples (samples of the same size with replacement) of the July inspection scores:" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "# create an empty list\n", "sample_means_july = []\n", "# loop to create 500 samples\n", "for i in range(500):\n", " # sample once from the SCORE column with replacement\n", " sample = df_july[\"SCORE\"].sample(15102, replace = True)\n", " # compute the mean of the new sample\n", " sample_mean = sample.mean()\n", " # add the mean to the list\n", " sample_means_july.append(sample_mean)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Plot the histogram of the means:" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAETBJREFUeJzt3W2MXGd5h/Hrrk3AeGnsEJgaO+qmJUSKsiLgbRoaQLsxoDRGJJVQBEqR3QatVBUExS0YqqpU6gdTNbyoqlBdJ2BBYIlCwFFCX9LgLa3UpsQkxSEmJYQF4iY2FDuwUUS6cPfDnJTF2fU5u/O6T66fNPKcM885c8/tmf+efWbObGQmkqTV7xcGXYAkqTsMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1Ih1jYZFBEbgH3AhUACvws8AHwGGAVmgasz88Tp9nP22Wfn6OjoyqutPP7446xfv77j/ZTMHtWzR83Yp3q97tGhQ4e+n5kvqBsXTU79j4j9wL9k5r6IOAN4LvA+4AeZuScidgMbM/M9p9vP+Ph43n333c0ewWnMzMwwMTHR8X5KZo/q2aNm7FO9XvcoIg5l5njduNopl4g4E3g1cD1AZj6ZmSeBK4H91bD9wFUrL1eS1Kkmc+jnAt8DPhYR90TEvohYD7Qy85FqzKNAq1dFSpLq1U65RMQ48O/ApZl5V0R8BPgh8PbM3LBg3InM3LjI9lPAFECr1do6PT3dcdFzc3OMjIx0vJ+S2aN69qgZ+1Sv1z2anJxsNOVCZp72AvwSMLtg+VXA7bTfFN1UrdsEPFC3r61bt2Y3HDx4sCv7KZk9qmePmrFP9XrdI+DurMnXzKyfcsnMR4HvRsT51aptwP3ArcCOat0O4EDznzeSpG5r9LFF4O3AjdUnXB4Cfof2/PtNEXEt8G3g6t6UKElqolGgZ+a9wGLzN9u6W44kaaU8U1SSCmGgS1Ihms6hS0NvdPftyxq/a2yendU2s3u296Ikqa88QpekQhjoklQIp1w0VJY7bSLpZzxCl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSrE2iaDImIW+BHwE2A+M8cj4izgM8AoMAtcnZknelOmJKnOco7QJzPzoswcr5Z3A3dm5nnAndWyJGlAOplyuRLYX13fD1zVeTmSpJWKzKwfFPEt4ASQwN9k5t6IOJmZG6rbAzjx1PIp204BUwCtVmvr9PR0x0XPzc0xMjLS8X5Ktlp7dPjoY327r9Y6OPZE+/rY5jP7dr+rzWp9LvVTr3s0OTl5aMHsyJIazaEDr8zMoxHxQuCOiPj6whszMyNi0Z8MmbkX2AswPj6eExMTDe9yaTMzM3RjPyVbrT3aufv2vt3XrrF5rjvcfgnMXjPRt/tdbVbrc6mfhqVHjaZcMvNo9e9x4HPAxcCxiNgEUP17vFdFSpLq1QZ6RKyPiOc9dR14HXAfcCuwoxq2AzjQqyIlSfWaTLm0gM+1p8lZC3wqM/8+Ir4M3BQR1wLfBq7uXZnqp9EOpz1m92zvUiWSlqM20DPzIeCli6z/H2BbL4qSJC2fZ4pKUiGafspF0hKcotKw8AhdkgphoEtSIQx0SSqEc+jquk7nlCWtjEfoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgrhqf8Sfl2ByuARuiQVwkCXpEI45SINWCfTPf61Iy3kEbokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqRONAj4g1EXFPRNxWLZ8bEXdFxIMR8ZmIOKN3ZUqS6iznCP0dwJEFyx8APpSZLwZOANd2szBJ0vI0CvSI2AJsB/ZVywFcBtxcDdkPXNWLAiVJzTQ9Qv8w8G7gp9Xy84GTmTlfLT8MbO5ybZKkZag99T8iXg8cz8xDETGx3DuIiClgCqDVajEzM7PcXTzN3NxcV/ZTsk56tGtsvn5QAVrrVv9j7cfrwNdbvWHpUZPvcrkUeENEXAE8B/hF4CPAhohYWx2lbwGOLrZxZu4F9gKMj4/nxMREx0XPzMzQjf2UrJMe7XyGfJXsrrF5rju8ur/OaPaaiZ7fh6+3esPSo9opl8x8b2ZuycxR4E3AFzPzGuAg8MZq2A7gQM+qlCTV6uRz6O8B3hURD9KeU7++OyVJklZiWb9vZuYMMFNdfwi4uPslSZJWwjNFJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCrK0bEBHPAb4EPLsaf3Nm/mlEnAtMA88HDgFvycwne1mspJ83uvv2FW87u2d7FyvRMGhyhP5j4LLMfClwEXB5RFwCfAD4UGa+GDgBXNu7MiVJdWoDPdvmqsVnVZcELgNurtbvB67qSYWSpEYazaFHxJqIuBc4DtwBfBM4mZnz1ZCHgc29KVGS1ERkZvPBERuAzwF/Any8mm4hIs4B/i4zL1xkmylgCqDVam2dnp7uuOi5uTlGRkY63k/JOunR4aOPdbma4dRaB8eeGHQVgzO2+cxG43y91et1jyYnJw9l5njduNo3RRfKzJMRcRB4BbAhItZWR+lbgKNLbLMX2AswPj6eExMTy7nLRc3MzNCN/ZSskx7t7OCNttVk19g81x1e1kugKLPXTDQa5+ut3rD0qHbKJSJeUB2ZExHrgNcCR4CDwBurYTuAA70qUpJUr8nhySZgf0Ssof0D4KbMvC0i7gemI+LPgXuA63tYpySpRm2gZ+ZXgZctsv4h4OJeFCVJWj7PFJWkQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiFq/0i0pDKN7r690bhdY/PsPGXs7J7tvShJHfIIXZIKYaBLUiGccinU4aOPPe3XZEll8whdkgphoEtSIQx0SSpEbaBHxDkRcTAi7o+Ir0XEO6r1Z0XEHRHxjerfjb0vV5K0lCZH6PPArsy8ALgE+P2IuADYDdyZmecBd1bLkqQBqQ30zHwkM79SXf8RcATYDFwJ7K+G7Qeu6lWRkqR6kZnNB0eMAl8CLgS+k5kbqvUBnHhq+ZRtpoApgFartXV6errjoufm5hgZGel4PyU7/oPHOPbEoKsYbq112KMGFuvT2OYzB1PMkOp1Jk1OTh7KzPG6cY0/hx4RI8BngXdm5g/bGd6WmRkRi/5kyMy9wF6A8fHxnJiYaHqXS5qZmaEb+ynZX914gOsOe5rB6ewam7dHDSzWp9lrJgZTzJAalkxq9CmXiHgW7TC/MTNvqVYfi4hN1e2bgOO9KVGS1ESTT7kEcD1wJDM/uOCmW4Ed1fUdwIHulydJaqrJ75uXAm8BDkfEvdW69wF7gJsi4lrg28DVvSlRktREbaBn5r8CscTN27pbjiRppTxTVJIKYaBLUiH8zJakZWv6146W4l886g2P0CWpEAa6JBXCKZch1smvtbvGuliIpFXBI3RJKoSBLkmFMNAlqRDOofdYpx/vkqSmPEKXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBWiNtAj4oaIOB4R9y1Yd1ZE3BER36j+3djbMiVJdZocoX8cuPyUdbuBOzPzPODOalmSNEC1gZ6ZXwJ+cMrqK4H91fX9wFVdrkuStEwrnUNvZeYj1fVHgVaX6pEkrVBkZv2giFHgtsy8sFo+mZkbFtx+IjMXnUePiClgCqDVam2dnp7uuOi5uTlGRkY63k8/HD762EDut7UOjj0xkLteNexRM8PWp7HNZw66hKfpdSZNTk4eyszxunFrV7j/YxGxKTMfiYhNwPGlBmbmXmAvwPj4eE5MTKzwLn9mZmaGbuynH3buvn0g97trbJ7rDq/0v/eZwR41M2x9mr1mYtAlPM2wZNJKp1xuBXZU13cAB7pTjiRppZp8bPHTwL8B50fEwxFxLbAHeG1EfAN4TbUsSRqg2t+jMvPNS9y0rcu1SJI64JmiklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUiOH5xp0hNTqgL9eSpOXyCF2SCmGgS1IhDHRJKoRz6JKeMTp5T2x2z/YuVtIbHqFLUiEMdEkqhIEuSYVwDl3SquK5IUvzCF2SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgrR0ZmiEXE58BFgDbAvM/d0papFLDw7bNfYPDuXcbbYaviWNEnD7XRnqNZlUr8yaMVH6BGxBvhr4DeBC4A3R8QF3SpMkrQ8nUy5XAw8mJkPZeaTwDRwZXfKkiQtVyeBvhn47oLlh6t1kqQBiMxc2YYRbwQuz8y3VstvAX49M992yrgpYKpaPB94YOXl/r+zge93YT8ls0f17FEz9qler3v0y5n5grpBnbwpehQ4Z8Hylmrdz8nMvcDeDu7naSLi7swc7+Y+S2OP6tmjZuxTvWHpUSdTLl8GzouIcyPiDOBNwK3dKUuStFwrPkLPzPmIeBvwD7Q/tnhDZn6ta5VJkpalo8+hZ+YXgC90qZbl6OoUTqHsUT171Ix9qjcUPVrxm6KSpOHiqf+SVIihCfSIOCciDkbE/RHxtYh4R7X+/RFxNCLurS5XLLH9H1Tb3RcRn46I5/T3EfTHUn2qbnt7RHy9Wv8XS2x/eUQ8EBEPRsTu/lXeP5306HTblqTT51E1bk1E3BMRt/Wn6v7rwuttQ0TcXI07EhGv6GnBmTkUF2AT8PLq+vOA/6L9lQLvB/6wZtvNwLeAddXyTcDOQT+mPvdpEvgn4NnVbS9cZNs1wDeBXwHOAP4TuGDQj2nIerTotoN+TMPUowX7eBfwKeC2QT+eYe0TsB94a3X9DGBDL+sdmiP0zHwkM79SXf8RcITlnXm6FlgXEWuB5wL/3f0qB+80ffo9YE9m/ri67fgimz8jvq6hkx514Xm4KnT4PCIitgDbgX39qXgwOulTRJwJvBq4vhrzZGae7GW9QxPoC0XEKPAy4K5q1dsi4qsRcUNEbDx1fGYeBf4S+A7wCPBYZv5jn8odmFP69BLgVRFxV0T8c0T82iKbPOO+rmEFPVpq22KtsEcfBt4N/LQvRQ6BFfTpXOB7wMeqqal9EbG+lzUOXaBHxAjwWeCdmflD4KPArwIX0Q7r6xbZZiPtI81zgRcB6yPit/tW9AAs0qe1wFnAJcAfATdFRAywxIHrpEeLbFuklfQoIl4PHM/MQ/2ud1BW+FxaC7wc+Ghmvgx4HOjp+1ZDFegR8SzaTbsxM28ByMxjmfmTzPwp8Le0pw1O9RrgW5n5vcz8X+AW4Df6VXe/LdYn2kfbt2Tbf9A+cjr7lE0bfV1DCTro0VLbFqeDHl0KvCEiZmlP210WEZ/sU9l910GfHgYezsynfsO7mXbA98zQBHr10+164EhmfnDB+k0Lhv0WcN8im38HuCQinlvtZxvtua7iLNUn4PO036ghIl5C+w2YU78s6BnxdQ2d9Og02xalkx5l5nszc0tmjtJ+Dn0xM4v8jbjDPj0KfDcizq9WbQPu72nBvXzHdTkX4JVAAl8F7q0uVwCfAA5X628FNlXjXwR8YcH2fwZ8nXbgf4Lq3efSLqfp0xnAJ6vH/xXgsiX6dAXtd+q/CfzxoB/PsPVoqW0H/ZiGqUen7GeCsj/l0unr7SLg7mr7zwMbe1mvZ4pKUiGGZspFktQZA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEL8HwVG8SJSilhFAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pd.Series(sample_means_july).hist(bins = 20)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Compute the 95% confidence interval for the means of the bootstrap samples of the July scores:" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "25.94111347938047" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.Series(sample_means_july).quantile(0.025)" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "26.491338906798703" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.Series(sample_means_july).quantile(0.975)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "What's your 95% confidence interval?\n", "\n", "Does it overlap with your 95% confidence interval of the mean of the January scores?\n", "\n", "Since these two confidence intervals will contain the true means 95% of the time, if the intervals do not overlap, we can say that there is a statistically significant difference in the January and July score means.\n", "\n", "We can visually check this too by plotting the two histograms of the means on the same plot:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "What do you think this difference in means implies about the distributions of the January and July inspection scores? Do you think the scores have the same distribution?\n", "\n", "Let's plot the histograms of the distributions of the January and July scores on the same plot to visually compare:" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAF4VJREFUeJzt3X+Q3HV9x/HniwRjzTEkEDxjEptQg05kaoQbSMb+sScFAuMYnbFOGItRcc4/oFVKR4lOi78YcGpNdaq0UVJQKSf1R4mZKD1jbhxn+BlFIGDCGRCSCRxCDLlQM8a++8d+Dtewe7u3v/c+r8fMzu338/l+P/vez9zt674/dlcRgZmZ5eeEThdgZmad4QAwM8uUA8DMLFMOADOzTDkAzMwy5QAwM8uUA8DMLFMOADOzTDkAzMwyNbvTBUxlwYIFsXTp0obHOXLkCHPnzm28oDbptXqh92rutXqh92p2va1XqeadO3f+OiJOqzpARHTt7eyzz45m2LFjR1PGaZdeqzei92rutXojeq9m19t6lWoG7osaXmN9CMjMLFMOADOzTDkAzMwy5QAwM8uUA8DMLFMOADOzTDkAzMwy5QAwM8uUA8DMLFNd/VEQXW/HdZX7Bje0rw4zszp4D8DMLFMOADOzTDkAzMwy5QAwM8uUA8DMLFMOADOzTDkAzMwy5QAwM8uUA8DMLFMOADOzTDkAzMwy5QAwM8tU1QCQ9HJJ90j6uaRdkj6Z2pdJulvSmKRvSnpZap+TlsdS/9KSsTak9t2SLmzVkzIzs+pq2QM4CrwlIt4IrATWSFoFfBbYGBGvBQ4Cl6X1LwMOpvaNaT0krQDWAW8A1gBfljSrmU/GzMxqVzUAomgiLZ6YbgG8BfhWar8ZeHu6vzYtk/rPk6TUPhwRRyPiMWAMOKcpz8LMzKatpnMAkmZJuh8YB0aAXwK/iYhjaZV9wKJ0fxHwJEDqPwScWtpeZhszM2uzmr4QJiJ+D6yUNA/4LvD6VhUkaQgYAujv72d0dLThMScmJpoyzksHXla5r4HHa1m9LdRrNfdavdB7Nbve1mu05ml9I1hE/EbSDmA1ME/S7PRf/mJgf1ptP7AE2CdpNnAy8GxJ+6TSbUofYxOwCWBgYCAKhcK0nlA5o6OjNGOcl5jqG8EK6+oetmX1tlCv1dxr9ULv1ex6W6/Rmmu5Cui09J8/kv4EOB94BNgBvDOtth64Pd3fkpZJ/T+KiEjt69JVQsuA5cA9dVduZmYNqWUPYCFwc7pi5wTgtojYKulhYFjSZ4CfATem9W8Evi5pDHiO4pU/RMQuSbcBDwPHgMvToSUzM+uAqgEQEQ8AbyrTvpcyV/FExG+Bv6ow1rXAtdMv08zMms3vBDYzy5QDwMwsUw4AM7NMOQDMzDLlADAzy5QDwMwsUw4AM7NMOQDMzDLlADAzy5QDwMwsUw4AM7NMOQDMzDLlADAzy5QDwMwsUw4AM7NMOQDMzDLlADAzy5QDwMwsUw4AM7NMOQDMzDLlADAzy5QDwMwsUw4AM7NMVQ0ASUsk7ZD0sKRdkj6U2j8hab+k+9Pt4pJtNkgak7Rb0oUl7WtS25ikq1vzlMzMrBaza1jnGHBVRPxU0knATkkjqW9jRHyudGVJK4B1wBuAVwM/lHRG6v4ScD6wD7hX0paIeLgZT8TMzKanagBExAHgQLp/WNIjwKIpNlkLDEfEUeAxSWPAOalvLCL2AkgaTus6AMzMOkARUfvK0lLgx8CZwN8B7wWeB+6juJdwUNK/AndFxDfSNjcC309DrImID6T2S4FzI+KK4x5jCBgC6O/vP3t4eLje5/aiiYkJ+vr6Gh7nJQ4/VbnvpFfVPWzL6m2hXqu51+qF3qvZ9bZepZoHBwd3RsRAte1rOQQEgKQ+4NvAhyPieUk3AJ8GIv38Z+D9tY5XSURsAjYBDAwMRKFQaHRIRkdHacY4L7Hjusp9hXV1D9uyeluo12rutXqh92p2va3XaM01BYCkEym++N8SEd8BiIinS/q/AmxNi/uBJSWbL05tTNFuZmZtVstVQAJuBB6JiM+XtC8sWe0dwEPp/hZgnaQ5kpYBy4F7gHuB5ZKWSXoZxRPFW5rzNMzMbLpq2QN4M3Ap8KCk+1Pbx4BLJK2keAjoceCDABGxS9JtFE/uHgMuj4jfA0i6ArgDmAVsjohdTXwubbNxZA8Aq554tmz/6tNPbWc5ZmZ1qeUqoJ8AKtO1bYptrgWuLdO+bartzMysffxOYDOzTDkAzMwy5QAwM8uUA8DMLFMOADOzTDkAzMwy5QAwM8uUA8DMLFMOADOzTDkAzMwy5QAwM8uUA8DMLFMOADOzTDkAzMwy5QAwM8uUA8DMLFMOADOzTDkAzMwy5QAwM8uUA8DMLFMOADOzTDkAzMwyVTUAJC2RtEPSw5J2SfpQaj9F0oikR9PP+aldkr4oaUzSA5LOKhlrfVr/UUnrW/e0zMysmlr2AI4BV0XECmAVcLmkFcDVwPaIWA5sT8sAFwHL020IuAGKgQFcA5wLnANcMxkaZmbWflUDICIORMRP0/3DwCPAImAtcHNa7Wbg7en+WuBrUXQXME/SQuBCYCQinouIg8AIsKapz8bMzGo2rXMAkpYCbwLuBvoj4kDqegroT/cXAU+WbLYvtVVqNzOzDphd64qS+oBvAx+OiOclvdgXESEpmlGQpCGKh47o7+9ndHS04TEnJiaaMs6kRb89CsBzJ68s2z86MRsaeLxm19sOvVZzr9ULvVez6229RmuuKQAknUjxxf+WiPhOan5a0sKIOJAO8Yyn9v3AkpLNF6e2/UDhuPaXVB4Rm4BNAAMDA1EoFI5fZdpGR0dpxjiTNo7sAWDV+EjZ/tWnnwqFdXWP3+x626HXau61eqH3ana9rddozbVcBSTgRuCRiPh8SdcWYPJKnvXA7SXt70lXA60CDqVDRXcAF0ian07+XpDazMysA2rZA3gzcCnwoKT7U9vHgOuB2yRdBvwKeFfq2wZcDIwBLwDvA4iI5yR9Grg3rfepiHiuKc/CzMymrWoARMRPAFXoPq/M+gFcXmGszcDm6RRoZmat4XcCm5llygFgZpYpB4CZWaYcAGZmmXIAmJllygFgZpYpB4CZWaYcAGZmmXIAmJllygFgZpYpB4CZWaYcAGZmmXIAmJllygFgZpYpB4CZWaYcAGZmmar5S+GtjQ4/BTuuq9w/uKF9tZjZjOU9ADOzTDkAzMwy5QAwM8uUA8DMLFMOADOzTDkAzMwyVTUAJG2WNC7poZK2T0jaL+n+dLu4pG+DpDFJuyVdWNK+JrWNSbq6+U/FzMymo5Y9gJuANWXaN0bEynTbBiBpBbAOeEPa5suSZkmaBXwJuAhYAVyS1jUzsw6p+kawiPixpKU1jrcWGI6Io8BjksaAc1LfWETsBZA0nNZ9eNoVm5lZUzRyDuAKSQ+kQ0TzU9si4MmSdfaltkrtZmbWIYqI6isV9wC2RsSZabkf+DUQwKeBhRHxfkn/CtwVEd9I690IfD8NsyYiPpDaLwXOjYgryjzWEDAE0N/ff/bw8HBDTxBgYmKCvr6+hseZNH74KABzjz5Ttn/unNlw0qvqHn/i0EH6TjhaeYUGxm6VZs9xq/VavdB7Nbve1qtU8+Dg4M6IGKi2fV2fBRQRT0/el/QVYGta3A8sKVl1cWpjivbjx94EbAIYGBiIQqFQT4l/ZHR0lGaMM2njyB4AVo2PlO1fffqpUFhX9/ij3xum0PdY5RUaGLtVmj3HrdZr9ULv1ex6W6/Rmus6BCRpYcniO4DJK4S2AOskzZG0DFgO3APcCyyXtEzSyyieKN5Sd9VmZtawqnsAkm4FCsACSfuAa4CCpJUUDwE9DnwQICJ2SbqN4sndY8DlEfH7NM4VwB3ALGBzROxq+rMxM7Oa1XIV0CVlmm+cYv1rgWvLtG8Dtk2rOjMzaxm/E9jMLFMOADOzTDkAzMwy5a+ErGDyUk8zs5nKAdACd+59lruOVQ6QK88/o43VmJmV50NAZmaZcgCYmWXKAWBmlimfA+hFO66r3De4oX11mFlP8x6AmVmmHABmZplyAJiZZcoBYGaWKQeAmVmmHABmZplyAJiZZcoBYGaWKQeAmVmmHABmZplyAJiZZcoBYGaWKQeAmVmmHABmZpmqGgCSNksal/RQSdspkkYkPZp+zk/tkvRFSWOSHpB0Vsk269P6j0pa35qnY2ZmtaplD+AmYM1xbVcD2yNiObA9LQNcBCxPtyHgBigGBnANcC5wDnDNZGiYmVlnVP1CmIj4saSlxzWvBQrp/s3AKPDR1P61iAjgLknzJC1M645ExHMAkkYohsqtDT+DzNy599kp+1cPtqkQM+t5Kr5WV1mpGABbI+LMtPybiJiX7gs4GBHzJG0Fro+In6S+7RSDoQC8PCI+k9r/AfjfiPhcmccaorj3QH9//9nDw8ONPkcmJibo6+ub1jbjh49WXWfu0Wcq9h2Zc1rFvleeNGfKcScOHaTvhPKPf+TosalrWrB4yv5WqWeOO6nX6oXeq9n1tl6lmgcHB3dGxEC17Rv+SsiICEnVU6T28TYBmwAGBgaiUCg0PObo6CjTHWfjyJ6q66waH6nYt+c1QxX73lU4Y8pxR783TKHvsbJ9d45X2QN4519P2d8q9cxxJ/VavdB7Nbve1mu05noD4GlJCyPiQDrEM57a9wNLStZbnNr284dDRpPto3U+dlutemJTp0swM2uJei8D3QJMXsmzHri9pP096WqgVcChiDgA3AFcIGl+Ovl7QWozM7MOqboHIOlWiv+9L5C0j+LVPNcDt0m6DPgV8K60+jbgYmAMeAF4H0BEPCfp08C9ab1PTZ4QNjOzzqjlKqBLKnSdV2bdAC6vMM5mYPO0qpvJdlw3ReeytpVhZvlq+CSwdZkpg6WKwQ3Nq8PMup4/CsLMLFPeA+iAjSN7WPVE+cs5V59+apurMbNceQ/AzCxTDgAzs0w5AMzMMuUAMDPLlAPAzCxTDgAzs0z5MtAuc+feZzly8pKqn/ppZtYo7wGYmWXKAWBmlikHgJlZphwAZmaZcgCYmWXKAWBmlikHgJlZphwAZmaZcgCYmWXKAWBmlil/FIT9wVTfJ+zvCzabcbwHYGaWqYYCQNLjkh6UdL+k+1LbKZJGJD2afs5P7ZL0RUljkh6QdFYznoCZmdWnGXsAgxGxMiIG0vLVwPaIWA5sT8sAFwHL020IuKEJj21mZnVqxTmAtUAh3b8ZGAU+mtq/FhEB3CVpnqSFEXGgBTVYux1+qvI5BJ8/MOtKje4BBPA/knZKGkpt/SUv6k8B/en+IuDJkm33pTYzM+sAFf8hr3NjaVFE7Jf0SmAE+BtgS0TMK1nnYETMl7QVuD4ifpLatwMfjYj7jhtziOIhIvr7+88eHh6uu75JExMT9PX1TWub8cNHAZh79Jm6HvPInNOm7J9q3GOzXsHs379Q1+POndOiC7tOetWU3ROHDtJ3wtG6tu2Een4nOq3Xana9rVep5sHBwZ0lh+UraujVIiL2p5/jkr4LnAM8PXloR9JCYDytvh9YUrL54tR2/JibgE0AAwMDUSgUGikRgNHRUaY7zsaRPQCsGh+p6zH3vGZoyv6pxn3u5JWccuj+uh539emn1rVdVYV1U3aPfm+YQt9jdW3bCfX8TnRar9Xseluv0ZrrDgBJc4ETIuJwun8B8ClgC7AeuD79vD1tsgW4QtIwcC5wyMf/2+vOvVN/zWTLwsPMulIjewD9wHclTY7znxHxA0n3ArdJugz4FfCutP424GJgDHgBeF8Dj21mZg2qOwAiYi/wxjLtzwLnlWkP4PJ6H89qU+2/fDOzSdl+FMTkMX6r0VQfEwHAsraUYWbNk20AWI/w5xOZtYw/C8jMLFMOADOzTPkQUIusemJTp0swM5uSA8BeNNUVRA29R8DH8c26UvYB4P/UzSxX2QeA1abq+wte6ctAzXqNA8A6q+r7C8ysVXwVkJlZprwHYL3LJ5fNGuI9ADOzTOWxB1Dm6wpXPeEPTTOzvHkPwMwsUw4AM7NM5XEIyFruyNFj3Dle32E1fxOZWWfM6ACY/Mz/Mxp4cbIZqsx5oZr5CiObIXwIyMwsUzN6D8B6Q0u+rN7fYGZWlQPAelpLwqMRfnOa9RAfAjIzy5T3AMymyx9gZzOEA8C6XtWPojazurQ9ACStAb4AzAK+GhHXt7sGy0el8Dhy8pKqlwb7/Qk207U1ACTNAr4EnA/sA+6VtCUiHm5nHWa1aPoJ5mqHjqY6SbzjOphYVnkMn2C2OrR7D+AcYCwi9gJIGgbWAg4Am1HqOmy19+9fvNvUcGkkHHxVU1Ej4d3F2h0Ai4AnS5b3Aee2uQazpmjluYlyY9dy2KqskmCpplrw/FFdx437km2n2mNpxDRfbCc/EaDS93+/WLdWT7uUyfm469iesv1Xnn9GxTm4c++z3PWaoYpjX3n+GdOuZ7oUES1/kBcfTHonsCYiPpCWLwXOjYgrStYZAiZn5XXA7iY89ALg100Yp116rV7ovZp7rV7ovZpdb+tVqvlPI+K0ahu3ew9gP7CkZHlxantRRGwCykd1nSTdFxEDzRyzlXqtXui9mnutXui9ml1v6zVac7vfCHYvsFzSMkkvA9YBW9pcg5mZ0eY9gIg4JukK4A6Kl4Fujohd7azBzMyK2v4+gIjYBmxr88M29ZBSG/RavdB7NfdavdB7Nbve1muo5raeBDYzs+7hD4MzM8vUjA4ASWsk7ZY0JunqTtdTjqQlknZIeljSLkkfSu2nSBqR9Gj6Ob/TtZaSNEvSzyRtTcvLJN2d5vqb6SR/15A0T9K3JP1C0iOSVnfzHEu6Mv0+PCTpVkkv77Y5lrRZ0rikh0rays6pir6Yan9A0lldUu8/pd+JByR9V9K8kr4Nqd7dki5sd72Vai7pu0pSSFqQlqc9xzM2AEo+duIiYAVwiaQVna2qrGPAVRGxAlgFXJ7qvBrYHhHLge1puZt8CHikZPmzwMaIeC1wELisI1VV9gXgBxHxeuCNFGvvyjmWtAj4W2AgIs6keMHEOrpvjm8C1hzXVmlOLwKWp9sQcEObaix1Ey+tdwQ4MyL+HNgDbABIf4PrgDekbb6cXlPa7SZeWjOSlgAXAE+UNE9/jiNiRt6A1cAdJcsbgA2drquGum+n+FlJu4GFqW0hsLvTtZXUuJjiH/dbgK2AKL4ZZXa5ue/0DTgZeIx0zqukvSvnmD+8Y/4UihdqbAUu7MY5BpYCD1WbU+DfgUvKrdfJeo/rewdwS7r/R68XFK9cXN0Nc5zavkXxH5nHgQX1zvGM3QOg/MdOLOpQLTWRtBR4E3A30B8RB1LXU0B/h8oq51+AjwD/l5ZPBX4TEcfScrfN9TLgGeA/0mGrr0qaS5fOcUTsBz5H8b+7A8AhYCfdPceTKs1pL/w9vh/4frrftfVKWgvsj4ifH9c17ZpncgD0FEl9wLeBD0fE86V9UYzzrrhcS9JbgfGI2NnpWqZhNnAWcENEvAk4wnGHe7psjudT/JDEZcCrgbmUOQzQ7bppTquR9HGKh2Nv6XQtU5H0CuBjwD82Y7yZHABVP3aiW0g6keKL/y0R8Z3U/LSkhal/ITDeqfqO82bgbZIeB4YpHgb6AjBP0uT7SrptrvcB+yLi7rT8LYqB0K1z/JfAYxHxTET8DvgOxXnv5jmeVGlOu/bvUdJ7gbcC706hBd1b759R/Mfg5+lvcDHwU0mvoo6aZ3IA9MTHTkgScCPwSER8vqRrC7A+3V9P8dxAx0XEhohYHBFLKc7pjyLi3cAO4J1pta6pFyAingKelPS61HQexY8g78o5pnjoZ5WkV6Tfj8l6u3aOS1Sa0y3Ae9KVKquAQyWHijpGxS+o+gjwtoh4oaRrC7BO0hxJyyieWL2nEzWWiogHI+KVEbE0/Q3uA85Kv+PTn+NOnNRo48mTiyme2f8l8PFO11Ohxr+guJv8AHB/ul1M8bj6duBR4IfAKZ2utUztBWBrun86xT+QMeC/gDmdru+4WlcC96V5/m9gfjfPMfBJ4BfAQ8DXgTndNsfArRTPUfwuvRBdVmlOKV4o8KX0t/ggxSucuqHeMYrHzSf/9v6tZP2Pp3p3Axd1yxwf1/84fzgJPO059juBzcwyNZMPAZmZ2RQcAGZmmXIAmJllygFgZpYpB4CZWaYcAGZmmXIAmJllygFgZpap/wdS47qLO51hfQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df_jan[\"SCORE\"].hist(bins = 40, alpha = 0.5)\n", "df_july[\"SCORE\"].hist(bins = 40, alpha = 0.5)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Recall we can make the histograms transparent by adding the parameter `alpha = 0.5`." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### If you are finished early:\n", "- Is there a statistically significant difference in the means of the January scores and the February scores?\n", "- In Lab 4, we fit a normal distribution to the babies' weights. If we take a sample of size 44 from that fitted normal distribution, how does its mean compare to the mean of the babies weights? Does this result tell us anything about whether the babies' weights come from a normal distribution? " ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.8" } }, "nbformat": 4, "nbformat_minor": 2 }